Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Am J Physiol Renal Physiol ; 326(6): F1041-F1053, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38660713

ABSTRACT

Beyond glycemic control, SGLT2 inhibitors (SGLT2is) have protective effects on cardiorenal function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to determine the direct effects of SGLT2i on Na+-dependent fluid transport and endocytic uptake in this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport across cell monolayers and dramatically inhibited endocytic uptake of albumin. These effects were independent of glucose and occurred at clinically relevant concentrations of drug. Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not affect endosomal pH or NHE3 phosphorylation. In addition, canagliflozin rapidly and selectively inhibited mitochondrial complex I activity. Inhibition of mitochondrial complex I by metformin recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite similar water intake. We conclude that canagliflozin selectively suppresses Na+-dependent fluid transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute significantly to reduced PT Na+-dependent fluid transport in vivo.NEW & NOTEWORTHY Reduced NHE3-mediated Na+ transport has been suggested to underlie the cardiorenal protection provided by SGLT2 inhibitors. We found that canagliflozin, but not empagliflozin, reduced NHE3-dependent fluid transport and endocytic uptake in cultured proximal tubule cells. These effects were independent of SGLT2 activity and resulted from inhibition of mitochondrial complex I and NHE3. Studies in mice are consistent with greater effects of canagliflozin versus empagliflozin on fluid transport. Our data suggest that these selective effects of canagliflozin contribute to reduced Na+-dependent transport in proximal tubule cells.


Subject(s)
Canagliflozin , Kidney Tubules, Proximal , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Hydrogen Exchanger 3 , Animals , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/enzymology , Sodium-Hydrogen Exchanger 3/metabolism , Canagliflozin/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Mice , Male , Sodium-Glucose Transporter 2/metabolism , Endocytosis/drug effects , Mice, Inbred C57BL , Albumins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Benzhydryl Compounds , Glucosides
2.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562767

ABSTRACT

Proximal tubule (PT) cells maintain a high-capacity apical endocytic pathway to recover essentially all proteins that escape the glomerular filtration barrier. The multiligand receptors megalin and cubilin play pivotal roles in the endocytic uptake of normally filtered proteins in PT cells but also contribute to the uptake of nephrotoxic drugs, including aminoglycosides. We previously demonstrated that opossum kidney (OK) cells cultured under continuous fluid shear stress (FSS) are superior to cells cultured under static conditions in recapitulating essential functional properties of PT cells in vivo. To identify drivers of the high-capacity, efficient endocytic pathway in the PT, we compared FSS-cultured OK cells with less endocytically active static-cultured OK cells. Megalin and cubilin expression are increased, and endocytic uptake of albumin in FSS-cultured cells is >5-fold higher compared with cells cultured under static conditions. To understand how differences in receptor expression, distribution, and trafficking rates contribute to increased uptake, we used biochemical, morphological, and mathematical modeling approaches to compare megalin traffic in FSS- versus static-cultured OK cells. Our model predicts that culturing cells under FSS increases the rates of all steps in megalin trafficking. Importantly, the model explains why, despite seemingly counterintuitive observations (a reduced fraction of megalin at the cell surface, higher colocalization with lysosomes, and a shorter half-life of surface-tagged megalin in FSS-cultured cells), uptake of albumin is dramatically increased compared with static-grown cells. We also show that FSS-cultured OK cells more accurately exhibit the mechanisms that mediate uptake of nephrotoxic drugs in vivo compared with static-grown cells. This culture model thus provides a useful platform to understand drug uptake mechanisms, with implications for developing interventions in nephrotoxic injury prevention.

3.
Am J Physiol Renal Physiol ; 325(4): F457-F464, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37534387

ABSTRACT

Proximal tubule (PT) cells retrieve albumin and a broad array of other ligands from the glomerular ultrafiltrate. Efficient uptake of albumin requires PT expression of both megalin and cubilin receptors. Although most proteins engage cubilin selectively, megalin is required to maintain robust flux through the apical endocytic pathway. Receptor-associated protein (RAP) is a chaperone that directs megalin to the cell surface, and recombinant RAP dramatically inhibits the uptake of numerous megalin and cubilin ligands. The mechanism by which this occurs has been suggested to involve competitive inhibition of ligand binding and/or conformational changes in megalin that prevent interaction with ligands and/or with cubilin. To discriminate between these possibilities, we determined the effect of RAP on endocytosis of albumin, which binds to cubilin and megalin receptors with high and low affinity, respectively. Uptake was quantified in opossum kidney (OK) cells and in megalin or cubilin (Cubn) knockout (KO) clones. Surprisingly, RAP inhibited fluid-phase uptake in addition to receptor-mediated uptake in OK cells and Cubn KO cells but had no effect on endocytosis when megalin was absent. The apparent Ki for RAP inhibition of albumin uptake was 10-fold higher in Cubn KO cells compared with parental OK cells. We conclude that in addition to its predicted high-affinity competition for ligand binding to megalin, the primary effect of RAP on PT cell endocytosis is to globally dampen megalin-dependent endocytic flux. Our data explain the complex effects of RAP on binding and uptake of filtered proteins and reveal a novel role in modulating endocytosis in PT cells.NEW & NOTEWORTHY Receptor-associated protein inhibits binding and uptake of all known endogenous ligands by megalin and cubilin receptors via unknown mechanism(s). Here, we took advantage of recently generated knockout cell lines to dissect the effect of this protein on megalin- and cubilin-mediated endocytosis. Our study reveals a novel role for receptor-associated protein in blocking megalin-stimulated endocytic uptake of fluid-phase markers and receptor-bound ligands in proximal tubule cells in addition to its direct effect on ligand binding to megalin receptors.


Subject(s)
Albumins , Low Density Lipoprotein Receptor-Related Protein-2 , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Ligands , Albumins/metabolism , Cell Membrane/metabolism , Endocytosis/physiology , Kidney Tubules, Proximal/metabolism
4.
Mol Biol Cell ; 34(7): ar74, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37126375

ABSTRACT

The kidney proximal tubule (PT) elaborates a uniquely high-capacity apical endocytic pathway to retrieve albumin and other proteins that escape the glomerular filtration barrier. Megalin and cubilin/amnionless (CUBAM) receptors engage Dab2 in these cells to mediate clathrin-dependent uptake of filtered ligands. Knockout of megalin or Dab2 profoundly inhibits apical endocytosis and is believed to atrophy the endocytic pathway. We generated CRISPR/Cas9 knockout (KO) clones lacking cubilin, megalin, or Dab2 expression in highly differentiated PT cells and determined the impact on albumin internalization and endocytic pathway function. KO of each component had different effects on the concentration dependence of albumin uptake as well its distribution within PT cells. Reduced uptake of a fluid phase marker was also observed, with megalin KO cells having the most dramatic decline. Surprisingly, protein levels and distribution of key endocytic proteins were preserved in KO PT cell lines and in megalin KO mice, despite the reduced endocytic activity. Our data highlight specific functions of megalin, cubilin, and Dab2 in apical endocytosis and demonstrate that these proteins drive endocytic flux without compromising the physical integrity of the apical endocytic pathway. Our studies suggest a novel model to explain how these components coordinate endocytic uptake in PT cells.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-2 , Receptors, Cell Surface , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Albumins/metabolism , Apoptosis Regulatory Proteins/metabolism , Endocytosis/physiology , Kidney Tubules, Proximal/metabolism , Mice, Knockout , Receptors, Cell Surface/metabolism
5.
Proc Natl Acad Sci U S A ; 120(17): e2300902120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068230

ABSTRACT

Protein translation, one of the most energy-consumptive processes in a eukaryotic cell, requires robust regulation, especially under energy-deprived conditions. A critical component of this regulation is the suppression of translational elongation through reduced ribosome association of the GTPase eukaryotic elongation factor 2 (eEF-2) resulting from its specific phosphorylation by the calmodulin (CaM)-activated α-kinase eEF-2 kinase (eEF-2K). It has been suggested that the eEF-2K response to reduced cellular energy levels is indirect and mediated by the universal energy sensor AMP-activated protein kinase (AMPK) through direct stimulatory phosphorylation and/or downregulation of the eEF-2K-inhibitory nutrient-sensing mTOR pathway. Here, we provide structural, biochemical, and cell-biological evidence of a direct energy-sensing role of eEF-2K through its stimulation by ADP. A crystal structure of the nucleotide-bound complex between CaM and the functional core of eEF-2K phosphorylated at its primary stimulatory site (T348) reveals ADP bound at a unique pocket located on the face opposite that housing the kinase active site. Within this basic pocket (BP), created at the CaM/eEF-2K interface upon complex formation, ADP is stabilized through numerous interactions with both interacting partners. Biochemical analyses using wild-type eEF-2K and specific BP mutants indicate that ADP stabilizes CaM within the active complex, increasing the sensitivity of the kinase to CaM. Induction of energy stress through glycolysis inhibition results in significantly reduced enhancement of phosphorylated eEF-2 levels in cells expressing ADP-binding compromised BP mutants compared to cells expressing wild-type eEF-2K. These results suggest a direct energy-sensing role for eEF-2K through its cooperative interaction with CaM and ADP.


Subject(s)
Calmodulin , Elongation Factor 2 Kinase , Elongation Factor 2 Kinase/metabolism , Calmodulin/metabolism , Allosteric Regulation , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Phosphorylation , Eukaryota/metabolism , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism
6.
bioRxiv ; 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36798395

ABSTRACT

A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.

7.
J Am Soc Nephrol ; 34(4): 619-640, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36758125

ABSTRACT

SIGNIFICANCE STATEMENT: Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease causes an unknown impairment in endocytic traffic, leading to tubular proteinuria. The authors integrated data from biochemical and quantitative imaging studies in proximal tubule cells into a mathematical model to determine that loss of ClC-5 impairs endosome acidification and delays early endosome maturation in proximal tubule cells, resulting in reduced megalin recycling, surface expression, and half-life. Studies in a Dent mouse model also revealed subsegment-specific differences in the effects of ClC-5 knockout on proximal tubule subsegments. The approach provides a template to dissect the effects of mutations or perturbations that alter tubular recovery of filtered proteins from the level of individual cells to the entire proximal tubule axis. BACKGROUND: Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease impairs the uptake of filtered proteins by the kidney proximal tubule, resulting in tubular proteinuria. Reduced posttranslational stability of megalin and cubilin, the receptors that bind to and recover filtered proteins, is believed to underlie the tubular defect. How loss of ClC-5 leads to reduced receptor expression remains unknown. METHODS: We used biochemical and quantitative imaging data to adapt a mathematical model of megalin traffic in ClC-5 knockout and control cells. Studies in ClC-5 knockout mice were performed to describe the effect of ClC-5 knockout on megalin traffic in the S1 segment and along the proximal tubule axis. RESULTS: The model predicts that ClC-5 knockout cells have reduced rates of exit from early endosomes, resulting in decreased megalin recycling, surface expression, and half-life. Early endosomes had lower [Cl - ] and higher pH. We observed more profound effects in ClC-5 knockout cells expressing the pathogenic ClC-5 E211G mutant. Alterations in the cellular distribution of megalin in ClC-5 knockout mice were consistent with delayed endosome maturation and reduced recycling. Greater reductions in megalin expression were observed in the proximal tubule S2 cells compared with S1, with consequences to the profile of protein retrieval along the proximal tubule axis. CONCLUSIONS: Delayed early endosome maturation due to impaired acidification and reduced [Cl - ] accumulation is the primary mediator of reduced proximal tubule receptor expression and tubular proteinuria in Dent disease. Rapid endosome maturation in proximal tubule cells is critical for the efficient recovery of filtered proteins.


Subject(s)
Dent Disease , Low Density Lipoprotein Receptor-Related Protein-2 , Mice , Animals , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Dent Disease/genetics , Dent Disease/metabolism , Endocytosis , Proteinuria/pathology , Endosomes/metabolism , Kidney Tubules, Proximal/metabolism , Disease Models, Animal , Mice, Knockout , Cell Culture Techniques , Antiporters
8.
Function (Oxf) ; 3(6): zqac046, 2022.
Article in English | MEDLINE | ID: mdl-36325513

ABSTRACT

The cells that comprise the proximal tubule (PT) are specialized for high-capacity apical endocytosis necessary to maintain a protein-free urine. Filtered proteins are reclaimed via receptor-mediated endocytosis facilitated by the multiligand receptors megalin and cubilin. Despite the importance of this pathway, we lack a detailed understanding of megalin trafficking kinetics and how they are regulated. Here, we utilized biochemical and quantitative imaging methods in a highly differentiated model of opossum kidney (OK) cells and in mouse kidney in vivo to develop mathematical models of megalin traffic. A preliminary model based on biochemically quantified kinetic parameters was refined by colocalization of megalin with individual apical endocytic compartment markers. Our model predicts that megalin is rapidly internalized, resulting in primarily intracellular distribution of the receptor at steady state. Moreover, our data show that early endosomes mature rapidly in PT cells and suggest that Rab11 is the primary mediator of apical recycling of megalin from maturing endocytic compartments. Apical recycling represents the rate-limiting component of endocytic traffic, suggesting that this step has the largest impact in determining the endocytic capacity of PT cells. Adaptation of our model to the S1 segment of mouse PT using colocalization data obtained in kidney sections confirms basic aspects of our model and suggests that our OK cell model largely recapitulates in vivo membrane trafficking kinetics. We provide a downloadable application that can be used to adapt our working parameters to further study how endocytic capacity of PT cells may be altered under normal and disease conditions.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-2 , Opossums , Animals , Mice , Endocytosis/physiology , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Opossums/metabolism
9.
BMC Pediatr ; 22(1): 632, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329412

ABSTRACT

Spinal muscular atrophy (5q-SMA; SMA), a genetic neuromuscular condition affecting spinal motor neurons, is caused by defects in both copies of the SMN1 gene that produces survival motor neuron (SMN) protein. The highly homologous SMN2 gene primarily expresses a rapidly degraded isoform of SMN protein that causes anterior horn cell degeneration, progressive motor neuron loss, skeletal muscle atrophy and weakness. Severe cases result in limited mobility and ventilatory insufficiency. Untreated SMA is the leading genetic cause of death in young children. Recently, three therapeutics that increase SMN protein levels in patients with SMA have provided incremental improvements in motor function and developmental milestones and prevented the worsening of SMA symptoms. While the therapeutic approaches with Spinraza®, Zolgensma®, and Evrysdi® have a clinically significant impact, they are not curative. For many patients, there remains a significant disease burden. A potential combination therapy under development for SMA targets myostatin, a negative regulator of muscle mass and strength. Myostatin inhibition in animal models increases muscle mass and function. Apitegromab is an investigational, fully human, monoclonal antibody that specifically binds to proforms of myostatin, promyostatin and latent myostatin, thereby inhibiting myostatin activation. A recently completed phase 2 trial demonstrated the potential clinical benefit of apitegromab by improving or stabilizing motor function in patients with Type 2 and Type 3 SMA and providing positive proof-of-concept for myostatin inhibition as a target for managing SMA. The primary goal of this manuscript is to orient physicians to the evolving landscape of SMA treatment.


Subject(s)
Muscular Atrophy, Spinal , Myostatin , Animals , Child , Child, Preschool , Humans , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Myostatin/genetics , Myostatin/metabolism , Myostatin/therapeutic use , Clinical Trials, Phase II as Topic
10.
Sci Adv ; 8(27): eabo2039, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857468

ABSTRACT

Translation is a tightly regulated process that ensures optimal protein quality and enables adaptation to energy/nutrient availability. The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K), a key regulator of translation, specifically phosphorylates the guanosine triphosphatase eEF-2, thereby reducing its affinity for the ribosome and suppressing the elongation phase of protein synthesis. eEF-2K activation requires calmodulin binding and autophosphorylation at the primary stimulatory site, T348. Biochemical studies predict a calmodulin-mediated activation mechanism for eEF-2K distinct from other calmodulin-dependent kinases. Here, we resolve the atomic details of this mechanism through a 2.3-Å crystal structure of the heterodimeric complex of calmodulin and the functional core of eEF-2K (eEF-2KTR). This structure, which represents the activated T348-phosphorylated state of eEF-2KTR, highlights an intimate association of the kinase with the calmodulin C-lobe, creating an "activation spine" that connects its amino-terminal calmodulin-targeting motif to its active site through a conserved regulatory element.

11.
iScience ; 25(6): 104412, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35663035

ABSTRACT

Prosocial behavior, helping others in need in particular, occurs preferentially in response to the perceived distress of one's own group members or ingroup. To investigate the development of ingroup bias, neural activity during a helping test was analyzed in adolescent and adult rats. Although adults selectively released trapped ingroup members, adolescent rats helped both ingroup and outgroup members, suggesting that ingroup bias emerges in adulthood. Analysis of brain-wide neural activity, indexed by expression of the early-immediate gene c-Fos, revealed increased activity for ingroup members across a broad set of regions previously associated with empathy. Adolescents showed reduced hippocampal and insular activity and increased orbitofrontal cortex activity compared to adults. Non-helper adolescents demonstrated increased amygdala connectivity. These findings demonstrate that biases for group-dependent prosocial behavior develop with age in rats and suggest that specific brain regions contribute to prosocial selectivity, pointing to possible targets for the functional modulation of ingroup bias.

12.
Neuron ; 110(5): 737-739, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35240060

ABSTRACT

In this issue of Neuron, Liu et al. (2022) molecularly identify subsets of estrogen receptor-1-positive neurons within the female ventrolateral subdivision of the ventromedial hypothalamus activated during sexual receptivity versus agonistic behaviors in distinct reproductive states and demonstrate that these subsets control state-dependent changes in social behaviors.


Subject(s)
Sexual Behavior, Animal , Animals , Female , Hypothalamus/physiology , Neurons/physiology , Sexual Behavior, Animal/physiology , Social Behavior
13.
Nurs Manage ; 53(3): 26-35, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35225834

ABSTRACT

14 strategies to safeguard nurses' mental health.


Subject(s)
COVID-19 , COVID-19/epidemiology , Emotions , Humans , Mental Health , SARS-CoV-2
14.
J Physiol ; 600(8): 1933-1952, 2022 04.
Article in English | MEDLINE | ID: mdl-35178707

ABSTRACT

Recent studies indicate that filtered albumin is retrieved in the proximal tubule (PT) via three pathways: receptor-mediated endocytosis via cubilin (high affinity) and megalin (low affinity), and fluid-phase uptake. Expression of megalin is required to maintain all three pathways, making it challenging to determine their respective contributions. Moreover, uptake of filtered molecules varies between the sub-segments (S1, S2 and S3) that make up the PT. Here we used new and published data to develop a mathematical model that predicts the rates of albumin uptake in mouse PT sub-segments in normal and nephrotic states, and partially accounts for competition by ß2 -microglobulin (ß2m) and immunoglobulin G (IgG). Our simulations indicate that receptor-mediated, rather than fluid-phase, uptake accounts for the vast majority of ligand recovery. Our model predicts that ∼75% of normally filtered albumin is reabsorbed via cubilin; however, megalin-mediated uptake predominates under nephrotic conditions. Our results also suggest that ∼80% of albumin is normally recovered in S1, whereas nephrotic conditions or knockout of cubilin shifts the bulk of albumin uptake to S2. The model predicts ß2m and IgG axial recovery profiles qualitatively similar to those of albumin under normal conditions. In contrast with albumin, however, the bulk of IgG and ß2m uptake still occurs in S1 under nephrotic conditions. Overall, our model provides a kinetic rationale for why tubular proteinuria can occur even though a large excess in potential PT uptake capacity exists, and suggests testable predictions to expand our understanding of the recovery profile of filtered proteins along the PT. KEY POINTS: We used new and published data to develop a mathematical model that predicts the profile of albumin uptake in the mouse proximal tubule in normal and nephrotic states, and partially accounts for competitive inhibition of uptake by normally filtered and pathological ligands. Three pathways, consisting of high-affinity uptake by cubilin receptors, low-affinity uptake by megalin receptors and fluid phase uptake, contribute to the overall retrieval of filtered proteins. The axial profile and efficiency of protein uptake depend on the initial filtrate composition and the individual protein affinities for megalin and cubilin. Under normal conditions, the majority of albumin is retrieved in sub-segment S1 but shifts to sub-segment S2 under nephrotic conditions. Other proteins exhibit different uptake profiles. Our model explains how tubular proteinuria can occur despite a large excess in potential proximal tubule uptake capacity.


Subject(s)
Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2 , Albumins/metabolism , Animals , Endocytosis/physiology , Female , Humans , Immunoglobulin G/metabolism , Kidney Tubules, Proximal/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Mice , Proteinuria/metabolism
15.
Am J Physiol Renal Physiol ; 322(1): F14-F26, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34747197

ABSTRACT

The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Knockout Techniques , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Receptors, Cell Surface/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/metabolism , Agenesis of Corpus Callosum/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Cells, Cultured , Databases, Genetic , Gene Regulatory Networks , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/metabolism , Hernias, Diaphragmatic, Congenital/pathology , Humans , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Male , Mice, Knockout , Monodelphis , Myopia/genetics , Myopia/metabolism , Myopia/pathology , Proteinuria/genetics , Proteinuria/metabolism , Proteinuria/pathology , Receptors, Cell Surface/genetics , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/metabolism , Renal Tubular Transport, Inborn Errors/pathology
16.
Transl Psychiatry ; 11(1): 631, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903726

ABSTRACT

Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.


Subject(s)
Gray Matter , Myelin Sheath , Amygdala/metabolism , Animals , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Hippocampus/metabolism , Humans , Male , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Rats
17.
Elife ; 102021 07 13.
Article in English | MEDLINE | ID: mdl-34253289

ABSTRACT

Prosocial behavior, in particular helping others in need, occurs preferentially in response to distress of one's own group members. In order to explore the neural mechanisms promoting mammalian helping behavior, a discovery-based approach was used here to identify brain-wide activity correlated with helping behavior in rats. Demonstrating social selectivity, rats helped others of their strain ('ingroup'), but not rats of an unfamiliar strain ('outgroup'), by releasing them from a restrainer. Analysis of brain-wide neural activity via quantification of the early-immediate gene c-Fos identified a shared network, including frontal and insular cortices, that was active in the helping test irrespective of group membership. In contrast, the striatum was selectively active for ingroup members, and activity in the nucleus accumbens, a central network hub, correlated with helping. In vivo calcium imaging showed accumbens activity when rats approached a trapped ingroup member, and retrograde tracing identified a subpopulation of accumbens-projecting cells that was correlated with helping. These findings demonstrate that motivation and reward networks are associated with helping an ingroup member and provide the first description of neural correlates of ingroup bias in rodents.


Subject(s)
Altruism , Behavior, Animal , Brain/physiology , Nervous System Physiological Phenomena , Animals , Bias , Male , Motivation , Neural Networks, Computer , Nucleus Accumbens , Rats , Rats, Sprague-Dawley , Reward
18.
Neurobiol Stress ; 14: 100319, 2021 May.
Article in English | MEDLINE | ID: mdl-33937444

ABSTRACT

Stress early in life can have a major impact on brain development, and there is increasing evidence that childhood stress confers vulnerability for later developing psychiatric disorders. In particular, during peri-adolescence, brain regions crucial for emotional regulation, such as the prefrontal cortex (PFC), amygdala (AMY) and hippocampus (HPC), are still developing and are highly sensitive to stress. Changes in myelin levels have been implicated in mental illnesses and stress effects on myelin and oligodendrocytes (OLs) are beginning to be explored as a novel and underappreciated mechanism underlying psychopathologies. Yet there is little research on the effects of acute stress on myelin during peri-adolescence, and even less work exploring sex-differences. Here, we used a rodent model to test the hypothesis that exposure to acute traumatic stress as a juvenile would induce changes in OLs and myelin content across limbic brain regions. Male and female juvenile rats underwent 3 h of restraint stress with exposure to a predator odor on postnatal day (p) 28. Acute stress induced a physiological response, increasing corticosterone release and reducing weight gain in stress-exposed animals. Brain sections containing the PFC, AMY and HPC were taken either in adolescence (p40), or in adulthood (p95) and stained for markers of OLs and myelin. We found that acute stress induced sex-specific changes in grey matter (GM) myelination and OLs in both the short- and long-term. Exposure to a single stressor as a juvenile increased GM myelin content in the AMY and HPC in p40 males, compared to the respective control group. At p40, corticosterone release during stress exposure was also positively correlated with GM myelin content in the AMY of male rats. Single exposure to juvenile stress also led to long-term effects exclusively in female rats. Compared to controls, stress-exposed females showed reduced GM myelin content in all three brain regions. Acute stress exposure decreased PFC and HPC OL density in p40 females, perhaps contributing towards this observed long-term decrease in myelin content. Overall, our findings suggest that the juvenile brain is vulnerable to exposure to a brief severe stressor. Exposure to a single short traumatic event during peri-adolescence produces long-lasting changes in GM myelin content in the adult brain of female, but not male, rats. These findings highlight myelin plasticity as a potential contributor to sex-specific sensitivity to perturbation during a critical window of development.

19.
Adv Ther ; 38(6): 3203-3222, 2021 06.
Article in English | MEDLINE | ID: mdl-33963971

ABSTRACT

INTRODUCTION: Apitegromab (SRK-015) is an anti-promyostatin monoclonal antibody under development to improve motor function in patients with spinal muscular atrophy, a rare neuromuscular disease. This phase 1 double-blind, placebo-controlled study assessed safety, pharmacokinetic parameters, pharmacodynamics (serum latent myostatin), and immunogenicity of single and multiple ascending doses of apitegromab in healthy adult subjects. METHODS: Subjects were administered single intravenous ascending doses of apitegromab of 1, 3, 10, 20, 30 mg/kg or placebo, and multiple intravenous ascending doses of apitegromab of 10, 20, 30 mg/kg or placebo. RESULTS: Following single ascending doses, the pharmacokinetic parameters of apitegromab appeared to be similar across all dose groups, following a biphasic pattern of decline in the concentration-time curve. The mean apparent terminal t1/2 after single intravenous doses of apitegromab ranged from 24 to 31 days across dose groups. Dose-related increases were observed in Cmax following multiple ascending doses. Single and multiple apitegromab doses resulted in dose-dependent and sustained increases in serum latent myostatin, indicating robust target engagement. Apitegromab was safe and well tolerated, on the basis of the adverse event (AE) profile with no clinically meaningful changes in baseline vital signs, electrocardiograms, or clinical laboratory parameters and no anti-drug antibody formation. CONCLUSION: These results support continued investigation of apitegromab for the treatment of patients with milder forms (type 2 and 3) of spinal muscular atrophy.


Subject(s)
Muscular Atrophy, Spinal , Myostatin , Adult , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Humans , Muscular Atrophy, Spinal/drug therapy
20.
Protein Sci ; 30(6): 1221-1234, 2021 06.
Article in English | MEDLINE | ID: mdl-33890716

ABSTRACT

The calmodulin (CaM) activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), plays a central role in regulating translational elongation by phosphorylating eukaryotic elongation factor 2 (eEF-2), thereby reducing its ability to associate with the ribosome and suppressing global protein synthesis. Using TR (for truncated), a minimal functional construct of eEF-2K, and utilizing hydrogen/deuterium exchange mass spectrometry (HXMS), solution-state nuclear magnetic resonance (NMR) and biochemical approaches, we investigate the conformational changes accompanying complex formation between Ca2+ -CaM and TR and the effects of autophosphorylation of the latter at Thr348, its primary regulatory site. Our results suggest that a CaM C-lobe surface, complementary to the one involved in recognizing the calmodulin-binding domain (CBD) of TR, provides a secondary TR-interaction platform. CaM helix F, which is part of this secondary surface, responds to both Thr348 phosphorylation and pH changes, indicating its integration into an allosteric network that encompasses both components of the Ca2+ -CaM•TR complex. Solution NMR data suggest that CaMH107K , which carries a helix F mutation, is compromised in its ability to drive the conformational changes in TR necessary to enable efficient Thr348 phosphorylation. Biochemical studies confirm the diminished capacity of CaMH107K to induce TR autophosphorylation compared to wild-type CaM.


Subject(s)
Calmodulin/chemistry , Elongation Factor 2 Kinase/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Substitution , Calmodulin/genetics , Elongation Factor 2 Kinase/genetics , Humans , Mutation, Missense , Phosphorylation , Protein Structure, Quaternary , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...