Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1359236, 2024.
Article in English | MEDLINE | ID: mdl-38742190

ABSTRACT

Background: Previous study suggested evidence for coexistence and similarities between endometriosis and polycystic ovary syndrome (PCOS), but it is unclear regarding the shared genetic architecture and causality underlying the phenotypic similarities observed for endometriosis and PCOS. Methods: By leveraging summary statistics from public genome-wide association studies regarding endometriosis (European-based: N=470,866) and PCOS (European-based: N=210,870), we explored the genetic correlation that shared between endometriosis and PCOS using linkage disequilibrium score regression. Shared risk SNPs were derived using PLACO (Pleiotropic analysis under composite null hypothesis) and FUMA (Functional Mapping and Annotation of Genetic Associations). The potential causal association between endometriosis and PCOS was investigated using two-sample Mendelian randomization (MR). Linkage disequilibrium score for the specific expression of genes analysis (LDSC-SEG) were performed for tissue enrichment analysis. The expression profiles of the risk gene in tissues were further examined. Results: A positive genetic association was observed between endometriosis and PCOS. 12 significant pleiotropic loci shared between endometriosis and PCOS were identified. Genetic associations between endometriosis and PCOS were particularly enriched in uterus, endometrium and fallopian tube. Two-sample MR analysis further indicated a potential causative effect of endometriosis on PCOS, and vice versa. Microarray and RNA-seq verified the expressions of SYNE1 and DNM3 were significantly altered in the endometrium of patients with endometriosis or PCOS compared to those of control subjects. Conclusion: Our study indicates the genetic correlation and shared risk genes between PCOS and endometriosis. These findings provide insights into the potential mechanisms behind their comorbidity and the future development of therapeutics.


Subject(s)
Endometriosis , Genetic Predisposition to Disease , Genome-Wide Association Study , Polycystic Ovary Syndrome , Polymorphism, Single Nucleotide , Humans , Polycystic Ovary Syndrome/genetics , Endometriosis/genetics , Female , Linkage Disequilibrium , Mendelian Randomization Analysis
2.
Mol Cytogenet ; 17(1): 7, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570848

ABSTRACT

BACKGROUND: Premature ovarian insufficiency (POI) is a clinical condition characterized by ovarian dysfunction in women under 40. The etiology of most POI cases remains unidentified and is believed to be multifactorial, including factors such as autoimmunity, metabolism, infection, and genetics. POI exhibits significant genetic heterogeneity, and it can result from chromosomal abnormalities and monogenic defects. CASE PRESENTATION: The study participant, a 33-year-old woman, presented with a history of irregular menstruation that commenced two years ago, progressing to prolonged menstrual episodes and eventual cessation. The participant exhibits a rearrangement of the X chromosome, characterized by heterozygosity duplication on the long arm and heterozygosity deletion on the short arm by whole exome sequencing(WES) combined with cell chromosome detection. CONCLUSIONS: This study expands the spectrum of mutations associated with POI resulting from X chromosomal abnormalities. WES-Copy number variation analysis, in conjunction with chromosome karyotype analysis and other detection techniques, can provide a more comprehensive understanding of the genetic landscape underlying complex single or multi-system diseases.

3.
J Ovarian Res ; 17(1): 32, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310280

ABSTRACT

BACKGROUND: The etiology of premature ovarian insufficiency, that is, the loss of ovarian activity before 40 years of age, is complex. Studies suggest that genetic factors are involved in 20-25% of cases. The aim of this study was to explore the oligogenic basis of premature ovarian insufficiency. RESULTS: Whole-exome sequencing of 93 patients with POI and whole-genome sequencing of 465 controls were performed. In the gene-burden analysis, multiple genetic variants, including those associated with DNA damage repair and meiosis, were more common in participants with premature ovarian insufficiency than in controls. The ORVAL-platform analysis confirmed the pathogenicity of the RAD52 and MSH6 combination. CONCLUSIONS: The results of this study indicate that oligogenic inheritance is an important cause of premature ovarian insufficiency and provide insights into the biological mechanisms underlying premature ovarian insufficiency.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Female , Humans , Primary Ovarian Insufficiency/genetics , Menopause, Premature/genetics
4.
Front Microbiol ; 14: 1117905, 2023.
Article in English | MEDLINE | ID: mdl-37228368

ABSTRACT

Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.

5.
Front Immunol ; 14: 1286491, 2023.
Article in English | MEDLINE | ID: mdl-38332917

ABSTRACT

Background: There is still controversy regarding the relationship between hypothyroidism and rheumatoid arthritis (RA), and there has been a dearth of studies on this association. The purpose of our study was to explore the shared genetic architecture between hypothyroidism and RA. Methods: Using public genome-wide association studies summary statistics of hypothyroidism and RA, we explored shared genetics between hypothyroidism and RA using linkage disequilibrium score regression, ρ-HESS, Pleiotropic analysis under a composite null hypothesis (PLACO), colocalization analysis, Multi-Trait Analysis of GWAS (MTAG), and transcriptome-wide association study (TWAS), and investigated causal associations using Mendelian randomization (MR). Results: We found a positive genetic association between hypothyroidism and RA, particularly in local genomic regions. Mendelian randomization analysis suggested a potential causal association of hypothyroidism with RA. Incorporating gene expression data, we observed that the genetic associations between hypothyroidism and RA were enriched in various tissues, including the spleen, lung, small intestine, adipose visceral, and blood. A comprehensive approach integrating PLACO, Bayesian colocalization analysis, MTAG, and TWAS, we successfully identified TYK2, IL2RA, and IRF5 as shared risk genes for both hypothyroidism and RA. Conclusions: Our investigation unveiled a shared genetic architecture between these two diseases, providing novel insights into the underlying biological mechanisms and establishing a foundation for more effective interventions.


Subject(s)
Arthritis, Rheumatoid , Hypothyroidism , Humans , Genome-Wide Association Study , Bayes Theorem , Arthritis, Rheumatoid/genetics , Transcriptome , Hypothyroidism/genetics , Hypothyroidism/complications
6.
J Ovarian Res ; 15(1): 31, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35227295

ABSTRACT

BACKGROUND: Premature ovarian insufficiency (POI) plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. RESULTS: The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. CONCLUSION: This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2.


Subject(s)
Formins/genetics , Formins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Primary Ovarian Insufficiency/genetics , Adult , DNA Repair/genetics , Female , Fetus/metabolism , Heterozygote , Histones/blood , Humans , Lymphocytes/metabolism , Molecular Structure , Mutation, Missense , Ovary/metabolism , Pedigree , Primary Ovarian Insufficiency/blood , Exome Sequencing
7.
Front Oncol ; 12: 1049473, 2022.
Article in English | MEDLINE | ID: mdl-36776354

ABSTRACT

Background: Acute promyelocytic leukemia (APL) is typically characterized by the presence of coagulopathy and the PML::RARA fusion gene. The FIP1L1::RARA has been reported as a novel fusion gene, but studies on its pathogenesis are limited. Objectives: A FIP1L1::RARA fusion in a child finally diagnosed as APL was reported. RNA sequencing (RNA-seq) of six patients (three cases of acute lymphoblastic leukemia (ALL), one case of myelodysplastic syndrome (MDS), one case of acute megakaryoblastic leukemia (M7), and one case of APL with FIP1L1::RARA) were performed. Methods: Transcriptome analysis of six patients was performed by RNA-seq. The heat map was used for showing the RNA expression profile, the volcano plot for identifying differential expression genes (DEGs), and the KEGG Orthology-Based Annotation System (KOBAS) online biological information database for KEGG pathway enrichment analysis. Results: Obvious differences between APL with FIP1L1::RARA and hematologic malignancies were identified. 1060 common differentially expressed genes (co-DEGs) were detected between APL with FIP1L1::RARA vs ALL and APL with FIP1L1::RARA vs myeloid neoplasms (MDS, M7), the up-regulated genes were mainly mapped into platelet activation, cancer, AMPK signaling pathway, PI3K-Akt signaling pathway, and MAPK signaling pathway. The down-regulated genes were significantly associated with TNF signaling pathway, Rap1 signaling pathway, Age-RAGE signaling pathway, and apoptosis. Conclusion: A FIP1L1::RARA fusion in a child finally diagnosed as APL was reported. RNA-seq may provide a new diagnostic method when RARA rearrangements fail to be identified by conventional methods. In the analysis of co-DEGs between case vs ALL and case vs myeloid neoplasms, the up-regulated and down-regulated genes were enriched in different signaling pathways. Further experimental studies are needed to identify pathogenesis and treatment for APL with FIP1L1::RARA.

8.
Biol Reprod ; 104(6): 1282-1291, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33709118

ABSTRACT

Zona pellucida (ZP), which is composed of at most four extracellular glycoproteins (ZP1, ZP2, ZP3, and ZP4) in mammals, shelters the oocytes and is vital in female fertility. Several studies have identified the indispensable roles of ZP1-3 in maintaining normal female fertility. However, the understanding of ZP4 is still very poor because only one study on ZP4-associated infertility performed in rabbits has been reported up to date. Here we investigated the function of mammalian Zp4 by creating a knockout (KO) rat strain (Zp4-/- rat) using CRISPR-Cas9-mediated DNA-editing method. The influence of Zp4 KO on ZP morphology and some pivotal processes of reproduction, including oogenesis, ovulation, fertilization, and pup production, were studied using periodic acid-Schiff's staining, superovulation, in vitro fertilization, and natural mating. The ZP morphology in Zp4-/- rats was normal, and none of these pivotal processes was affected. This study renewed the knowledge of mammalian Zp4 by suggesting that Zp4 was completely dispensable for female fertility.


Subject(s)
Fertility/genetics , Fertilization , Rats/physiology , Zona Pellucida Glycoproteins/genetics , Animals , Female , Gene Editing , Rats/genetics , Zona Pellucida Glycoproteins/metabolism
9.
Clin Chim Acta ; 495: 656-663, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30096315

ABSTRACT

Hemophilia A is an X-linked recessive bleeding disorder caused by FVIII gene deficiency, which may result in spontaneous joint hemorrhages or life-threatening bleeding. Currently, cell-based gene therapy via ex vivo transduction of transplantable cells with integrating gene-expressing vectors offers an attractive treatment for HA. In present study, we targeted an expression cassette of B-domain-deleted FVIII into the ribosomal DNA (rDNA) locus of human embryonic stem cells (hESCs) by transfection with a nonviral targeting plasmid pHrn. The targeted hESCs clone could be expanded and retained the main pluripotent properties of differentiation into three germ layers both in vitro and in vivo. Importantly, under defined induction conditions, the targeted hESCs could differentiated into functional mesenchymal stem cells (MSCs) and hepatocytes, as validated by relevant specific cell markers and functional examination. Tumorgenesis assay demonstrated that these cells are relatively safe for future applications. Analysis on gene expression revealed that exogenous FVIII mRNA and FVIII proteins were both present in differentiated MSCs and hepatocytes. These results indicated that through gene targeting at hESCs rDNA locus a persistent cell source of transplantable genetic-modified cells can be accomplished for HA therapy.


Subject(s)
DNA, Ribosomal/genetics , Ectopic Gene Expression , Factor VIII/genetics , Human Embryonic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Line , Humans
11.
Biomed Res Int ; 2013: 135189, 2013.
Article in English | MEDLINE | ID: mdl-23762822

ABSTRACT

BACKGROUND: Genetic modification, such as the addition of exogenous genes to the MSC genome, is crucial to their use as cellular vehicles. Due to the risks associated with viral vectors such as insertional mutagenesis, the safer nonviral vectors have drawn a great deal of attention. METHODS: VEGF, bFGF, vitamin C, and insulin-transferrin-selenium-X were supplemented in the MSC culture medium. The cells' proliferation and survival capacity was measured by MTT, determination of the cumulative number of cells, and a colony-forming efficiency assay. The plasmid pHr2-NL was constructed and nucleofected into MSCs. The recombinants were selected using G418 and characterized using PCR and Southern blotting. RESULTS: BFGF is critical to MSC growth and it acted synergistically with vitamin C, VEGF, and ITS-X, causing the cells to expand significantly. The neomycin gene was targeted to the rDNA locus of human MSCs using a nonviral human ribosomal targeting vector. The recombinant MSCs retained multipotential differentiation capacity, typical levels of hMSC surface marker expression, and a normal karyotype, and none were tumorigenic in nude mice. CONCLUSIONS: Exogenous genes can be targeted to the rDNA locus of human MSCs while maintaining the characteristics of MSCs. This is the first nonviral gene targeting of hMSCs.


Subject(s)
DNA, Ribosomal/genetics , Gene Targeting , Genetic Loci/genetics , Mesenchymal Stem Cells/metabolism , Animals , Antigens, Surface/metabolism , Ascorbic Acid/pharmacology , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Fibroblast Growth Factor 2/pharmacology , Humans , Insulin/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Karyotyping , Mice , Mice, Nude , Mutagenesis, Site-Directed , Selenium/pharmacology , Transferrin/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...