Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Viral Immunol ; 37(4): 216-219, 2024 05.
Article in English | MEDLINE | ID: mdl-38717823

ABSTRACT

In May 2022, mpox began to spread worldwide, posing a serious threat to human public health. Modified Vaccinia Ankara-Bavaria Nordic (MVA-BN) is a live attenuated orthopoxvirus vaccine that has been authorized by the U.S. Food and Drug Administration as the vaccine of choice for the prevention of mpox. In this study, we conducted a meta-analysis of all currently published literature on the efficacy and safety of the MVA-BN vaccine in the real world, showing that the MVA-BN vaccine is effective and safe, with efficacy of up to 75% with a single dose and up to 80% with a two-dose vaccine. Meanwhile, we found that subcutaneous injection has lower local and systemic adverse events than intradermal injection, regardless of single- or two-dose vaccination, and subcutaneous injection is better tolerated in children, the elderly, or people with underlying medical conditions. These results have important reference value for clinical practice.


Subject(s)
Vaccine Efficacy , Vaccines, Attenuated , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology , Vaccinia virus/immunology , Vaccinia virus/genetics , Vaccination , Injections, Subcutaneous , Injections, Intradermal , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Orthopoxvirus/immunology , Orthopoxvirus/genetics , Child
2.
BMC Public Health ; 24(1): 1244, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711074

ABSTRACT

OBJECTIVE: A notable research gap exists in the systematic review and meta-analysis concerning the efficacy, immunogenicity, and safety of the respiratory syncytial virus (RSV) prefusion F vaccine. METHODS: We conducted a comprehensive search across PubMed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov to retrieve articles related to the efficacy, immunogenicity, and safety of RSV prefusion F vaccines, published through September 8, 2023. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS: A total of 22 randomized controlled trials involving 78,990 participants were included in this systematic review and meta-analysis. The RSV prefusion F vaccine exhibited a vaccine effectiveness of 68% (95% CI: 59-75%) against RSV-associated acute respiratory illness, 70% (95% CI: 60-77%) against medically attended RSV-associated lower respiratory tract illness, and 87% (95% CI: 71-94%) against medically attended severe RSV-associated lower respiratory tract illness. Common reported local adverse reactions following RSV prefusion F vaccination include pain, redness, and swelling at the injection site, and systemic reactions such as fatigue, headache, myalgia, arthralgia, nausea, and chills. CONCLUSIONS: Our meta-analysis suggests that vaccines using the RSV prefusion F protein as antigen exhibit appears broadly acceptable efficacy, immunogenicity, and safety in the population. In particular, it provides high protective efficiency against severe RSV-associated lower respiratory tract disease.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Humans , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Vaccine Efficacy , Respiratory Syncytial Virus, Human/immunology , Immunogenicity, Vaccine , Randomized Controlled Trials as Topic
3.
Front Microbiol ; 14: 1292897, 2023.
Article in English | MEDLINE | ID: mdl-38075891

ABSTRACT

Background: Mycobacterium bacteria, encompassing both slow growth (SGM) and rapid growth mycobacteria (RGM), along with true pathogenic (TP), opportunistic pathogenic (OP), and non-pathogenic (NP) types, exhibit diverse phenotypes. Yet, the genetic underpinnings of these variations remain elusive. Methods: Here, We conducted a comprehensive comparative genomics study involving 53 Mycobacterium species to unveil the genomic drivers behind growth rate and pathogenicity disparities. Results: Our core/pan-genome analysis highlighted 1,307 shared gene families, revealing an open pan-genome structure. A phylogenetic tree highlighted clear boundaries between SGM and RGM, as well as TP and other species. Gene family contraction emerged as the primary alteration associated with growth and pathogenicity transitions. Specifically, ABC transporters for amino acids and inorganic ions, along with quorum sensing genes, exhibited significant contractions in SGM species, potentially influencing their distinct traits. Conversely, TP strains displayed contraction in lipid and secondary metabolite biosynthesis and metabolism-related genes. Across the 53 species, we identified 26 core and 64 accessory virulence factors. Remarkably, TP and OP strains stood out for their expanded mycobactin biosynthesis and type VII secretion system gene families, pivotal for their pathogenicity. Conclusion: Our findings underscore the importance of gene family contraction in nucleic acids, ions, and substance metabolism for host adaptation, while emphasizing the significance of virulence gene family expansion, including type VII secretion systems and mycobactin biosynthesis, in driving mycobacterial pathogenicity.

4.
Front Cell Infect Microbiol ; 13: 1282526, 2023.
Article in English | MEDLINE | ID: mdl-37900320

ABSTRACT

Bovine viral diarrhea virus (BVDV) is a significant pathogen that causes great economic losses in the global livestock industry. During the long-term interactions between BVDV and its hosts, the virus has evolved multiple strategies to evade the host's innate immunity and adaptive immunity, thereby promoting viral survival and replication. This review focuses on the most recent research on immune evasion strategies employed by BVDV, including evading type I IFN signaling pathway, evading host adaptive immunity, mediating NF-κB signaling pathway, mediating cell apoptosis and inducing autophagy. Unraveling BVDV's immune evasion strategies will enhance our understanding of the pathogenesis of BVDV and contribute to the development of more effective therapies for the prevention, control and eradication of BVDV.


Subject(s)
Diarrhea Viruses, Bovine Viral , Immune Evasion , Humans , Immunity, Innate , Adaptive Immunity , Diarrhea
5.
Infect Drug Resist ; 16: 6781-6793, 2023.
Article in English | MEDLINE | ID: mdl-37904830

ABSTRACT

Background: Recent research highlights the contribution of co-infections to elevated disease severity and mortality among COVID-19 patients. Given China's decision to ease epidemic prevention policies in December 2022, a comprehensive exploration of the risks and characteristics of co-infections with respiratory pathogens becomes imperative. Methods: We conducted a retrospective analysis of 716 COVID-19 patients admitted to a primary hospital in China. The detection of twelve respiratory pathogens was conducted using qPCR, and the potential risk factors were analyzed through Cox regression analysis. Results: Within this cohort, 76.82% of cases exhibited co-infection involving eleven distinct pathogens. Among these, bacterial co-infections were observed in 74% of cases, with Streptococcus pneumoniae and Haemophilus influenzae emerging as the most prevalent bacterial co-infection agents. Additionally, 15% of cases presented with viral co-infections, predominantly involving influenza A virus and respiratory syncytial virus. Nevertheless, our investigation suggested that there might be some inappropriate antibiotic use in treatments. Furthermore, risk analysis unveiled dyspnea, hypoproteinemia, low lymphocyte counts, and co-infection with Mycoplasma pneumoniae as prominent risk factors for COVID-19 inpatients. Conclusion: Our findings underscore a significant occurrence of co-infections among COVID-19 patients during the epidemic, emphasizing the need for enhanced antibiotic stewardship. Effective management strategies should encompass respiratory status, nutritional aspects, and vigilance towards co-infections involving M. pneumoniae during COVID-19 treatment. This study underscores the significance of comprehensive management protocols to address the multifaceted challenges presented by co-infections in COVID-19 patients.

6.
Explor Target Antitumor Ther ; 4(4): 780-792, 2023.
Article in English | MEDLINE | ID: mdl-37711588

ABSTRACT

Aim: DNA damage involves in the carcinogenesis of some cancer and may act as a target for therapeutic intervention of cancers. However, it is unclear whether aflatoxin B1 (AFB1)-DNA adducts (ADAs), an important kind of DNA damage caused by AFB1, affect the efficiency of post-operative adjuvant transarterial chemoembolization (po-TACE) treatment improving hepatocellular carcinoma (HCC) survival. Methods: A hospital-based retrospective study, including 318 patients with Barcelona Clinic Liver Cancer (BCLC)-C stage HCC from high AFB1 exposure areas, to investigate the potential effects of ADAs in the tissues with HCC on po-TACE treatment. The amount of ADAs in the cancerous tissues was tested by competitive enzyme-linked immunosorbent assay (c-ELISA). Results: Among these patients with HCC, the average amount of ADAs was 3.00 µmol/mol ± 1.51 µmol/mol DNA in their tissues with cancer. For these patients, increasing amount of ADAs was significantly associated with poorer overall survival (OS) and tumor reoccurrence-free survival (RFS), with corresponding death risk (DR) of 3.69 (2.78-4.91) and tumor recurrence risk (TRR) of 2.95 (2.24-3.88). The po-TACE therapy can efficiently improve their prognosis [DR = 0.59 (0.46-0.76), TRR = 0.63 (0.49-0.82)]. Interestingly, this improving role was more noticeable among these patients with high ADAs [DR = 0.36 (0.24-0.53), TRR = 0.40 (0.28-0.59)], but not among those with low ADAs (P > 0.05). Conclusions: These results suggest that increasing ADAs in the cancerous tissues may be beneficial for po-TACE in ameliorating the survival of patients with HCC.

7.
Appl Microbiol Biotechnol ; 107(5-6): 1515-1523, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36723701

ABSTRACT

Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, including conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to prevent outbreak of orf. KEY POINTS: • Orf virus emerged and reemerged in past years • Rapid and efficient diagnostic approaches are needed and critical for ORFV detection • Novel and sensitive diagnostic methods are required for ORFV detection.


Subject(s)
Ecthyma, Contagious , Orf virus , Animals , Sheep , Orf virus/genetics , Ecthyma, Contagious/diagnosis , Ecthyma, Contagious/epidemiology , Real-Time Polymerase Chain Reaction/methods , Recombinases , Disease Outbreaks
8.
Front Cell Infect Microbiol ; 13: 1309096, 2023.
Article in English | MEDLINE | ID: mdl-38487680

ABSTRACT

Introduction: Goatpox, a severe infectious disease caused by goatpox virus (GTPV), leads to enormous economic losses in the livestock industry. Traditional live attenuated vaccines cause serious side effects and exist a risk of dispersal. Therefore, it is urgent to develop efficient and safer vaccines to prevent and control of GTPV. Methods: In the present study, we are aimed to design a multi-epitope subunit vaccine against GTPV using an immunoinformatics approach. Various immunodominant cytotoxic T lymphocytes (CTL) epitopes, helper T lymphocytes (HTL) epitopes, and B-cell epitopes from P32, L1R, and 095 proteins of GTPV were screened and liked by the AAY, GPGPG, and KK connectors, respectively. Furthermore, an adjuvant ß-defensin was attached to the vaccine's N-terminal using the EAAAK linker to enhance immunogenicity. Results: The constructed vaccine was soluble, non-allergenic and non-toxic and exhibited high levels of antigenicity and immunogenicity. The vaccine's 3D structure was subsequently predicted, refined and validated, resulting in an optimized model with a Z-value of -3.4. Molecular docking results demonstrated that the vaccine had strong binding affinity with TLR2(-27.25 kcal/mol), TLR3(-39.84 kcal/mol), and TLR4(-59.42 kcal/mol). Molecular dynamics simulation results indicated that docked vaccine-TLR complexes were stable. Immune simulation analysis suggested that the vaccine can induce remarkable increase in antibody titers of IgG and IgM, higher levels of IFN-γ and IL-2. Conclusion: The designed GTPV multi-epitope vaccine is structurally stable and can induce robust humoral and cellular immune responses, which may be a promising vaccine candidate against GTPV.


Subject(s)
Capripoxvirus , Viral Vaccines , Molecular Docking Simulation , Immunoinformatics , Epitopes, T-Lymphocyte , Computational Biology/methods , Epitopes, B-Lymphocyte , Molecular Dynamics Simulation , Vaccines, Subunit
10.
Pathogens ; 11(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36558765

ABSTRACT

BACKGROUND: L. monocytogenes and L. ivanovii, the only two pathogens of Listeria, can survive in various environments, having different pathogenic characteristics. However, the genetic basis of their excellent adaptability and differences in pathogenicity has still not been completely elucidated. METHODS: We performed a comparative genomic analysis based on 275 L. monocytogenes, 10 L. ivanovii, and 22 non-pathogenic Listeria strains. RESULTS: Core/pan-genome analysis revealed that 975 gene families were conserved in all the studied strains. Additionally, 204, 242, and 756 gene families existed uniquely in L. monocytogenes, L. ivanovii, and both, respectively. Functional annotation partially verified that these unique gene families were closely related to their adaptability and pathogenicity. Moreover, the protein-protein interaction (PPI) network analysis of these unique gene sets showed that plenty of carbohydrate transport systems and energy metabolism enzymes were clustered in the networks. Interestingly, ethanolamine-metabolic-process-related proteins were significantly enriched in the PPI network of the unique genes of the Listeria pathogens, which can be understood as a determining factor of their pathogenicity. CONCLUSIONS: The utilization capacity of multiple carbon sources of Listeria pathogens, especially ethanolamine, is the key genetic basis for their ability to adapt to various environments and pathogenic lifestyles.

12.
Database (Oxford) ; 20222022 05 25.
Article in English | MEDLINE | ID: mdl-35616100

ABSTRACT

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Subject(s)
Metadata , Semantic Web , Data Management , Databases, Factual , Workflow
13.
J Biomed Semantics ; 13(1): 12, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468846

ABSTRACT

BACKGROUND: The COVID-19 pandemic has challenged healthcare systems and research worldwide. Data is collected all over the world and needs to be integrated and made available to other researchers quickly. However, the various heterogeneous information systems that are used in hospitals can result in fragmentation of health data over multiple data 'silos' that are not interoperable for analysis. Consequently, clinical observations in hospitalised patients are not prepared to be reused efficiently and timely. There is a need to adapt the research data management in hospitals to make COVID-19 observational patient data machine actionable, i.e. more Findable, Accessible, Interoperable and Reusable (FAIR) for humans and machines. We therefore applied the FAIR principles in the hospital to make patient data more FAIR. RESULTS: In this paper, we present our FAIR approach to transform COVID-19 observational patient data collected in the hospital into machine actionable digital objects to answer medical doctors' research questions. With this objective, we conducted a coordinated FAIRification among stakeholders based on ontological models for data and metadata, and a FAIR based architecture that complements the existing data management. We applied FAIR Data Points for metadata exposure, turning investigational parameters into a FAIR dataset. We demonstrated that this dataset is machine actionable by means of three different computational activities: federated query of patient data along open existing knowledge sources across the world through the Semantic Web, implementing Web APIs for data query interoperability, and building applications on top of these FAIR patient data for FAIR data analytics in the hospital. CONCLUSIONS: Our work demonstrates that a FAIR research data management plan based on ontological models for data and metadata, open Science, Semantic Web technologies, and FAIR Data Points is providing data infrastructure in the hospital for machine actionable FAIR Digital Objects. This FAIR data is prepared to be reused for federated analysis, linkable to other FAIR data such as Linked Open Data, and reusable to develop software applications on top of them for hypothesis generation and knowledge discovery.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Hospitals , Humans , Metadata , Semantic Web
14.
Front Biosci (Landmark Ed) ; 26(11): 1191-1203, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34856763

ABSTRACT

Background: Our previous studies have reported that polycomb chromobox 4 (CBX4) has a potential promoting hepatocellular carcinoma (HCC) angiogenesis and tumor progression. However, it is unclear whether genetic single-nucleotide polymorphisms (SNPs) in this gene are associated with HCC prognosis. Methods: We conducted a hospital-based two-phase study, including 598 patients with pathologically diagnosed HCC for the SNPs screening phase and 328 HCC patients for clinic significance validating phase, to elucidate the association between SNPs of CBX4 and the survival of HCC. The genotypes of CBX4 were tested using the SNaPshot method and the effects of CBX4 SNPs on HCC prognosis were analyzed using Kaplan-Meier survival model and Cox regression model. Results: A total of 33 SNPs were selected and genotyped in this study. We found the rs77447679 SNP was significantly related to survival in individuals with HCC. Specifically, survival was noticeably decreased in HCC patients who have mutant homozygote AA of this SNP (rs77447679-AA) compared with these with wild type (rs77447679-CC). An additive effect of rs77447679 polymorphism and aflatoxin B1 exposure level was also observed in the survival analyses of HCC cases. Furthermore, this SNP was positively correlated not only with tumor size, grade, stage, and microvessel density (correlation coefficient r = 0.17, 0.23, 0.23, and 0.42, respectively), but also with increasing CBX4 expression (r = 0.57). Interestingly, the mutant genotypes of rs77447679 can significantly improve the therapeutic response of HCC cases on post-operative adjuvant transarterial chemoembolization (pa-TACE), but wild type not. Conclusions: These data suggest that genetic polymorphisms in the CBX4 may be a prognostic biomarker for HCC, and the rs77447679 SNP is such a potential candidate.


Subject(s)
Carcinoma, Hepatocellular , Ligases/genetics , Liver Neoplasms , Polycomb-Group Proteins , Carcinoma, Hepatocellular/genetics , Chemoembolization, Therapeutic , Humans , Liver Neoplasms/genetics , Polycomb-Group Proteins/genetics , Polymorphism, Single Nucleotide
15.
Cancer Med ; 8(18): 7869-7880, 2019 12.
Article in English | MEDLINE | ID: mdl-31663692

ABSTRACT

Previous studies have shown that single-nucleotide polymorphisms (SNPs) of a disintegrin and metalloproteinase with thrombospondin type 1 motif 4 (ADAMTS4) may involve in the pathogenesis of some diseases. However, it is not clear whether they are associated with hepatocellular carcinoma (HCC). A hospital-based case-control study, including 862 cases with HCC and 1120 controls, was conducted to assess the effects of 258 SNPs in the coding regions of ADAMTS4 on HCC risk and prognosis. We found that six SNPs in ADAMTS4 were differential distribution between cases and controls via the primary screening analyses; however, only rs538321148 and rs1014509103 polymorphisms were further identified to modify the risk of HCC (odds ratio: 2.73 and 2.95; 95% confidence interval, 2.28-3.29 and 2.43-3.58; P-value, 5.73 × 10-27 and 1.36 × 10-27 , respectively). Significant interaction between these two SNPs and two known causes of hepatitis B virus and aflatoxin B1 were also observed. Furthermore, rs538321148 and rs1014509103 polymorphisms were associated not only with clinicopathological features of tumor such as tumor stage and grade, microvessel density, and vessel metastasis, but with poor overall survival. Additionally, these SNPs significantly downregulated ADATMS4 expression in tumor tissues. These data suggest that SNPs in the coding region of ADAMTS4, such as rs538321148 and rs1014509103, may be potential biomarkers for predicting HCC risk and prognosis.


Subject(s)
ADAMTS4 Protein/genetics , Carcinoma, Hepatocellular/genetics , Disintegrins/genetics , Genetic Predisposition to Disease , Liver Neoplasms/genetics , Polymorphism, Single Nucleotide , Alleles , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Genotype , Humans , Kaplan-Meier Estimate , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Odds Ratio , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...