Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0123722, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36728436

ABSTRACT

Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis.

3.
Front Microbiol ; 13: 821311, 2022.
Article in English | MEDLINE | ID: mdl-35464963

ABSTRACT

Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a life-threatening syndrome, which is caused by EBV infection that is usually refractory to treatment and shows relapse. The development of new biomarkers for the early diagnosis and clinical treatment of EBV-HLH is urgently needed. Exosomes have been shown to mediate various biological processes and are ideal non-invasive biomarkers. Here, we present the differential plasma exosomal proteome of a patient with EBV-HLH before vs. during treatment and with that of his healthy twin brother. A tandem mass tag-labeled LC-MS technique was employed for proteomic detection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that differential proteomic profiles were related to virus infection, coagulopathy, nervous system dysfunction, imbalance of immune response, and abnormal liver function. The candidate biomarkers were first identified in the patient's plasma exosomes at different treatment and follow-up time points. Then, 14 additional EBV-HLH exosome samples were used to verify six differentially expressed proteins. The upregulation of C-reactive protein, moesin, galectin three-binding protein, and heat shock cognate 71 kDa protein and the downregulation of plasminogen and fibronectin 1 could serve as potential biomarkers of EBV-HLH. This plasma exosomal proteomic analysis provides new insights into the diagnostic and therapeutic biomarkers of EBV-HLH.

4.
Front Microbiol ; 12: 805223, 2021.
Article in English | MEDLINE | ID: mdl-34966378

ABSTRACT

Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.

5.
Front Cell Dev Biol ; 9: 722020, 2021.
Article in English | MEDLINE | ID: mdl-34746122

ABSTRACT

Extracellular vesicles (EVs), consisting of exosomes, micro-vesicles, and other vesicles, mainly originate from the multi-vesicular body (MVB) pathway or plasma membrane. EVs are increasingly recognized as a tool to mediate the intercellular communication and are closely related to human health. Viral infection is associated with various diseases, including respiratory diseases, neurological diseases, and cancers. Accumulating studies have shown that viruses could modulate their infection ability and pathogenicity through regulating the component and function of EVs. Non-coding RNA (ncRNA) molecules are often targets of viruses and also serve as the main functional cargo of virus-related EVs, which have an important role in the epigenetic regulation of target cells. In this review, we summarize the research progress of EVs under the regulation of viruses, highlighting the content alteration and function of virus-regulated EVs, emphasizing their isolation methods in the context of virus infection, and potential antiviral strategies based on their use. This review would promote the understanding of the viral pathogenesis and the development of antiviral research.

6.
Cancer Lett ; 523: 135-147, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34634383

ABSTRACT

Epstein-Barr virus (EBV) is closely related to the development of several malignancies, such as B-cell lymphoma (B-CL), by the mechanism through which these malignancies develop remains largely unknown. We previously observed downregulation of the long noncoding RNA (lncRNA) IGFBP7-AS1 in response to EBV infection. However, the role of IGFBP7-AS1 in EBV-associated cancers has not been clarified. Here, we found that expression of IGFBP7-AS1, as well as its sense gene IGFBP7, is decreased in EBV-positive B-CL cells and clinical tissues. IGFBP7-AS1 stabilizes IGFBP7 mRNA by forming a duplex based on their overlapping regions. The tumour suppressor p53 transcriptionally activates IGFBP7-AS1 expression by binding to the promoter region of the lncRNA gene. The IGFBP7-AS1 expression is able to be rescued in EBV-positive cells in wild-type (wt) p53-dependent manner. IGFBP7-AS1 inhibits the proliferation and promotes the apoptosis of B-CL cells. Moreover, tumorigenic properties due to the depletion of IGFBP7-AS1 were restored by exogenous expression of IGFBP7 or wt-p53. Furthermore, the functional p53/IGFBP7-AS1/IGFBP7 axis facilitates apoptosis by suppressing the production and secretion of the NPPB signal peptide and further regulating the cGMP-PKG signalling pathway. This study demonstrates that EBV promotes tumorigenesis, particularly in B-CL progression, by downregulating the novel p53-responsive lncRNA IGFBP7-AS1.


Subject(s)
Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/pathogenicity , Insulin-Like Growth Factor Binding Proteins/genetics , Lymphoma, B-Cell/etiology , RNA, Long Noncoding/physiology , Tumor Suppressor Protein p53/physiology , Animals , Apoptosis , Carcinogenesis , Cell Line, Tumor , Cyclic GMP/physiology , Cyclic GMP-Dependent Protein Kinases/physiology , Down-Regulation , Female , Humans , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/virology , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...