Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 79(4): 1661-7, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17297970

ABSTRACT

This paper demonstrates a chemical surface modification method for covalent attachment of various polymers by using silane-based "click" chemistry on silica surfaces and within glass microchannels suitable for CE systems. Modified surfaces are characterized by contact angle measurements, X-ray photoelectron spectroscopy, and Fourier transform infrared-attenuated total reflection spectroscopy. Electroosmotic flow (EOF) measurements in modified and unmodified channels are provided. Spectroscopic and transport data show that various polymers can be covalently attached to glass surfaces with a measurable change in EOF.


Subject(s)
Glass/chemistry , Microfluidics/instrumentation , Silicon Dioxide/chemistry , Molecular Structure , Polymers/chemistry , Surface Properties
2.
Langmuir ; 22(9): 4104-9, 2006 Apr 25.
Article in English | MEDLINE | ID: mdl-16618151

ABSTRACT

Separation rates and resolutions within capillary electrophoretic (CE) systems can be enhanced when surface zeta potentials are uniform with minimum deviations from ideal pluglike flow. Microfluidic CE devices based on poly(methyl methacrylate) (PMMA) are being developed due to the optical clarity, availability, stability, and reproducible electroosmotic flow (EOF) rates displayed by this polymer. Control of EOF in polymer-based CE systems can be achieved by surface zeta potential alteration through chemical modification. Herein, a method will be presented for the surface functionalization of PMMA with chemistry analogous to formation of trichlorosilane self-assembled monolayers on SiO2. The current method involves two separate steps. First, surface activation with water-vapor plasma introduces surface hydroxylation. Second, treatment of the plasma-treated PMMA with a substituted trichlorosilane solution forms the functional surface layer. The modified surfaces were characterized using several analytical techniques, including water contact angle, X-ray photoelectron spectroscopy, Fourier transform infrared-attenuated total reflection, secondary ion mass spectroscopy, and measurement of EOF velocities within PMMA microchannels.

3.
J Am Chem Soc ; 127(51): 17976-7, 2005 Dec 28.
Article in English | MEDLINE | ID: mdl-16366528

ABSTRACT

We describe herein a polymeric material that prefers to align perpendicular to a stretch-aligned polymer host in the solid state. Poly(iptycene) poly-1 was synthesized from monomer 1 under hyperbaric techniques via a Diels-Alder polymerization. Polarized excitation spectra of the anthracene end groups in this material in a stretch-aligned, solution-cast poly(vinyl chloride) (PVC) film showed that the poly(iptycene) prefers to align normal (counter aspect ratio) to the stretching direction of the PVC. This is explained by a "threading" mechanism, whereby the PVC intercalates through the internal free volume presented by poly-1, similar to effects observed in small molecule iptycenes under similar conditions.

4.
Langmuir ; 21(20): 9365-73, 2005 Sep 27.
Article in English | MEDLINE | ID: mdl-16171375

ABSTRACT

Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

5.
Langmuir ; 21(8): 3259-66, 2005 Apr 12.
Article in English | MEDLINE | ID: mdl-15807562

ABSTRACT

Two new surfactant molecules are reported that contain thermally labile Diels-Alder adducts connecting the hydrophilic and hydrophobic sections of each molecule. The two surfactants possess identical hydrophobic dodecyl tail segments but have phenol and carboxylic acid hydrophilic headgroups, respectively. Deprotonation with potassium hydroxide affords the formation of water-soluble surfactants. Room temperature aqueous solutions of both surfactants exhibit classical surface-active agent behavior similar to common analagous alkylaryl surfactant molecules. Critical micelle concentrations have been determined for each surfactant through dynamic surface tension and dye solubilization techniques. Small-angle neutron scattering measurements of the aqueous surfactant solutions indicate the presence of spherical micelles with radii of 16.5 angstroms for the carboxylate and 18.8 angstroms for the phenolate. When these surfactants are exposed to elevated temperatures (>50 degrees C), the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments. Aqueous solutions of each surfactant subsequently exhibit a loss of all surface-active behavior and the micellar aggregates are no longer detectable.

6.
J Am Chem Soc ; 125(46): 14113-9, 2003 Nov 19.
Article in English | MEDLINE | ID: mdl-14611248

ABSTRACT

Polymers incorporating the triptycene subunit were prepared for the molecular-level design of low dielectric constant (low-kappa) materials that can be used to manufacture faster integrated circuits. Triptycenes having restricted rotation by multiple point attachment to the polymer backbone are shown to introduce free volume into the films, thereby lowering their dielectric constants. The triptycene containing polymers exhibit a number of desirable properties including low-water absorption and high thermal stability. Systematic studies wherein comparisons are made between two separate classes of triptycene polymers and their non-triptycene containing analogues demonstrate that proper insertion of triptycenes into a polymer backbone can give rise to a reduction in the material's dielectric constant while also improving its mechanical properties. These characteristics are desired by the semiconductor industry for the next generation of microprocessors and memory to provide insulation of the increasingly shrinking features.

7.
J Am Chem Soc ; 124(15): 3826-7, 2002 Apr 17.
Article in English | MEDLINE | ID: mdl-11942808

ABSTRACT

Triptycenes have general applicability for increasing the alignment of fluorescent and dichroic dyes in LC hosts. Dyes containing varying numbers of triptycenes were synthesized to study the effect of free-volume alignment of triptycenes on the alignment of dyes. These dyes were designed such that multiple triptycenes could be incorporated and the triptycene-free volume is coincident to the aspect ratio of the dye, allowing a cooperative effect to increase their overall average alignment. With increasing triptycene incorporation, a stepwise increase in the alignment parameters of each dye was seen. It was also found that the attachment of one triptycene group has a negligible effect on the optical switching response times of the dyes. This can be a powerful tool for designing dyes with higher alignments for a variety of applications including guest-host reflective LCDs and holographic data storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...