Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(15): e2306753, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37994254

ABSTRACT

Photosensitive supercapacitors incorporate light-sensitive materials on capacitive electrodes, enabling solar energy conversion and storage in one device. In this study, heterogeneous structures of rod-shaped ZnO decorated with Ce2S3 nanoparticles on nickel foam (ZnO@Ce2S3/NF) are synthesized using a two-step hydrothermal method as photosensitive supercapacitor electrodes for capacitance enhancement under visible light. The formation of ZnO@Ce2S3 heterogeneous structures is confirmed using various structural characterization techniques. The area-specific capacitance of the ZnO@Ce2S3/NF composite electrode increased from 1738.1 to 1844.0 mF cm-2 after illumination under a current density of 5 mA cm-2, which is 2.4 and 2.8 times higher than that of ZnO and Ce2S3 electrodes under similar conditions, respectively, indicating the remarkable light-induced capacitance enhancement performance. The ZnO@Ce2S3/NF electrode also exhibits a higher photocurrent and photovoltage than the two single electrodes, demonstrating its excellent photosensitivity. The improved capacitance performance and photosensitivity under illumination are attributed to the well-constructed energy-level structure, which stimulates the flow of photogenerated electrons from the outer circuit and the involvement of photogenerated holes in the resulting surface-controlled capacitance. In addition, the assembled ZnO@Ce2S3/NF-based hybrid supercapacitor exhibits a great energy density of 145.0 mWh cm-2 under illumination. This study provides a novel strategy for the development of high-performance solar energy conversion/storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...