Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 12(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688579

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS: We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS: We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS: These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.


Subject(s)
Cytomegalovirus , Glioblastoma , Humans , Glioblastoma/immunology , Glioblastoma/virology , Glioblastoma/pathology , Mice , Cytomegalovirus/immunology , Animals , Cytomegalovirus Infections/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Brain Neoplasms/immunology , Tumor Microenvironment/immunology , RNA-Seq , Female , Male , Single-Cell Gene Expression Analysis
2.
Int J Biol Sci ; 18(2): 841-857, 2022.
Article in English | MEDLINE | ID: mdl-35002529

ABSTRACT

CircRNAs have garnered significant interest in recent years due to their regulation in human tumorigenesis, yet, the function of most glioma-related circRNAs remains unclear. In this study, using RNA-Seq, we screened differentially regulated circRNAs in glioma, in comparison to non-tumor brain tissue. Loss- and gain-of-function strategies were used to assess the effect of circCDK14 on tumor progression both in vitro and in vivo. Luciferase reporter, RNA pull-down and fluorescence in situ hybridization assays were carried out to validate interactions between circCDK14 and miR-3938 as well as miR-3938 and PDGFRA. Transmission electron microscopic observation of mitochondria, iron and reactive oxygen species assays were employed for the detection of circCDK14 effect on glioma cells' sensitivity to erastin-induced ferroptosis (Fp). Our findings indicated that circCDK14 was overexpressed in glioma tissues and cell lines, and elevated levels of circCDK14 induced poor prognosis of glioma patients. CircCDK14 promotes the migration, invasion and proliferation of glioma cells in vitro as well as tumorigenesis in vivo. An evaluation of the underlying mechanism revealed that circCDK14 sponged miR-3938 to upregulate oncogenic gene PDGFRA expression. Moreover, we also found that circCDK14 reduced glioma cells' sensitivity to Fp by regulating PDGFRA expression. In conclusion, circCDK14 induces tumor in glioma and increases malignant tumor behavior via the miR-3938/PDGFRA axis. Hence, the miR-3938/PDGFRA axis may be an excellent candidate of anti-glioma therapy.


Subject(s)
Cyclin-Dependent Kinases/genetics , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Glioma/pathology , RNA, Circular/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinases/metabolism , Disease Progression , Female , Glioma/genetics , Glioma/metabolism , Humans , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Xenograft Model Antitumor Assays
3.
Int J Biol Sci ; 17(11): 2899-2911, 2021.
Article in English | MEDLINE | ID: mdl-34345215

ABSTRACT

Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.


Subject(s)
Cytomegalovirus Infections/prevention & control , Immunotherapy/methods , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/therapeutic use , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy, Adoptive
SELECTION OF CITATIONS
SEARCH DETAIL
...