Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 69(6): 763-771, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38246797

ABSTRACT

The development of cost-effective electrocatalysts with high efficiency and long durability for hydrogen evolution reaction (HER) remains a great challenge in the field of water splitting. Herein, we design an ultrafine and highly dispersed Ru nanoparticles stabilized on porous V8C7/C matrix via pyrolysis of the metal-organic frameworks V-BDC (BDC: 1,4-benzenedicarboxylate). The obtained Ru-V8C7/C composite exhibits excellent HER performance in all pH ranges. At the overpotential of 40 mV, its mass activity is about 1.9, 4.1 and 9.4 times higher than that of commercial Pt/C in acidic, neutral and alkaline media, respectively. Meanwhile, Ru-V8C7/C shows the remarkably high stability in all pH ranges which, in particular, can maintain the current density of 10 mA cm-2 for over 150 h in 1.0 mol L-1 phosphate buffer saline (PBS). This outstanding HER performance can be attributed to the high intrinsic activity of Ru species and their strong interface interactions to the V8C7/C substrate. The synergistic effect of abundant active sites on the surface and the formed Ru-C-V units at the interface promotes the adsorption of reaction intermediates and the release of active sites, contributing the fast HER kinetics. This work provides a reference for developing versatile and robust HER catalysts by surface and interface regulation for pH tolerance.

2.
Angew Chem Int Ed Engl ; 62(17): e202302220, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36859751

ABSTRACT

The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni-O-Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni-O-Ir bridge induced the optimization of H2 O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.

3.
Nanoscale Res Lett ; 15(1): 48, 2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32088775

ABSTRACT

In the present work, a tubular nano-copper sulfide was successfully synthesized by hydrothermal method. The physical and chemical properties of the prepared materials were characterized by XRD, SEM, TEM, and BET. The synthesized copper sulfide was used as an adsorbent for removing 17α-ethynyl estradiol (EE2) and exhibited excellent adsorption properties. At 25 °C, 15 mg of adsorbent was applied for 50 mL of 5 mg/L EE2 solution, adsorption equilibrium was reached after 180 min, and the adsorption rate reached nearly 90%. In addition, the kinetics, isothermal adsorption, and thermodynamics of the adsorption process were discussed on the basis of theoretical calculations and experimental results. The theoretical maximum adsorption capacity of copper sulfide was calculated to be 147.06 mg/g. The results of this study indicated that copper sulfide was a stable and efficient adsorbent with promising practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...