Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9903, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688964

ABSTRACT

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Subject(s)
Agaricales , Gastrointestinal Microbiome , Larva , Pleurotus , Animals , Larva/microbiology , Pleurotus/metabolism , Agaricales/metabolism , Agaricales/genetics , Biodegradation, Environmental , Diptera/microbiology , Diptera/metabolism , Flammulina/metabolism , Flammulina/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
2.
Sci Rep ; 13(1): 22431, 2023 12 17.
Article in English | MEDLINE | ID: mdl-38104200

ABSTRACT

Endophytic fungi play an important role in the growth and development of traditional Chinese medicine plants. We isolated a strain of Acrocalymma vagum from the endophytic fungi of the traditional Chinese plants Paris. To accurately identify this endophytic fungal species of interest, we sequenced the mitochondrial genome of A. vagum, which is the first discovered mitochondrial genome in Massarineae. The A. vagum mitochondrial genome consists of a 35,079-bp closed circular DNA molecule containing 36 genes. Then, we compared the general sequence characteristics of A. vagum with those of Pleosporales, and the second structure of the 22 tRNAs was predicted. The phylogenetic relationship of A. vagum was constructed using two different data sets (protein-coding genes and amino acids). The phylogenetic tree shows that A. vagum is located at the root of Pleosporales. The analysis of introns shows that the number of introns increases with the increase in branch length. The results showed that monophyly was confirmed for all families in Pleosporales except for Pleosporaceae. A. vagum is an ancient species in the Pleosporales, and Pleosporaceae may require further revision. In Pleosporales, the number of introns is positively correlated with branch length, providing data for further study on the origin of introns.


Subject(s)
Genome, Mitochondrial , Humans , Phylogeny , Introns , RNA, Transfer/genetics , Paris
3.
Adv Biol (Weinh) ; 7(12): e2300189, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37423953

ABSTRACT

This work hypothesizes that some genes undergo radically changed transcription regulations (TRs) in breast cancer (BC), but don't show differential expressions for unknown reasons. The TR of a gene is quantitatively formulated by a regression model between the expression of this gene and multiple transcription factors (TFs). The difference between the predicted and real expression levels of a gene in a query sample is defined as the mqTrans value of this gene, which quantitatively reflects its regulatory changes. This work systematically screens the undifferentially expressed genes with differentially expressed mqTrans values in 1036 samples across five datasets and three ethnic groups. This study calls the 25 genes satisfying the above hypothesis in at least four datasets as dark biomarkers, and the strong dark biomarker gene CXXC5 (CXXC Finger Protein 5) is even supported by all the five independent BC datasets. Although CXXC5 does not show differential expressions in BC, its transcription regulations show quantitative associations with BCs in diversified cohorts. The overlapping long noncoding RNAs (lncRNAs) may have contributed their transcripts to the expression miscalculations of dark biomarkers. The mqTrans analysis serves as a complementary view of the transcriptome-based detections of biomarkers that are ignored by many existing studies.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Transcriptome , Biomarkers , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293039

ABSTRACT

Sensing trace amounts of 4-nitrophenol (4-NP) as a harmful substance to organisms even in small quantities is of great importance. The present study includes a sensitive and selective electrochemical sensor for detecting 4-NP in natural water samples using formamide-converted nitrogen-carbon materials (shortened to f-NC) as a new material for electrode modification. The structure and morphology of the f-NC were set apart by SEM, TEM, XRD, XPS, FTIR, Raman, and the electrochemical performance of the f-NC were set apart by CV, EIS and CC. We studied the electrochemical behaviour of 4-NP on the glassy carbon electrode modified with f-NC before and after pyrolysis treatment (denoted as f-NC1/GCE and f-NC2/GCE). In 0.2 M of H2SO4 solution, the f-NC2/GCE has an apparent electrocatalytic activity to reduce 4-NP. Under the optimal conditions, the reduction peak current of 4-NP varies linearly, with its concentration in the range of 0.2 to 100 mM, and the detection limit obtained as 0.02 mM (S/N = 3). In addition, the electrochemical sensor has high selectivity, and the stability is quite good. The preparation and application of the sensor to detect 4-NP in water samples produced satisfactory results, which provides a new method for the simple, sensitive and quantitative detection of 4-NP.


Subject(s)
Carbon , Nitrogen , Carbon/chemistry , Electrodes , Formamides , Water , Electrochemical Techniques/methods
5.
Environ Res ; 214(Pt 3): 114007, 2022 11.
Article in English | MEDLINE | ID: mdl-35934146

ABSTRACT

A novel electrochemical sensor was prepared using N-doped carbon mesoporous materials supported with nickel nanoparticles (Ni-NCs) for environmental p-nitrophenol (p-NP) detection in a specific geographical area. These as-prepared Ni-NCs were dispersed in polyethyleneimine (PEI) solution and modified onto a glassy carbon electrode (GCE) for electrocatalytic reduction of p-NP. The Ni-NCs-PEI/GCE showed a high Faraday current at -0.302 V during p-NP reduction, because of the synergistic effect between Ni-NCs and PEI. Under ideal conditions, the Ni-NCs-PEI/GCE was used in the voltametric determination of p-NP, with high sensitivity. The linear ranges for p-NP are 0.06-10 µM and 10-100 µM with low detection limit (4.0 nM) and high sensitivity (1.465 µA µM-1 cm-2). In the presence of other phenolic compounds, this sensor showed good selectivity for p-NP detection. The Ni-NCs-PEI/GCE was also used to determine p-NP in environmental water samples of a specific geographical area, with recoveries ranging from 95.9% to 109.4%, and an RSD of less than 3.6%. Therefore, this novel Ni-NCs-PEI/GCE provides a good example for the design of other carbon-based nanocomposite materials, for electrochemical detection of trace p-NP in a specific geographical area.


Subject(s)
Carbon , Nanocomposites , Carbon/chemistry , Nanocomposites/chemistry , Nickel , Nitrogen , Nitrophenols
6.
Environ Sci Pollut Res Int ; 29(52): 79545-79554, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35713834

ABSTRACT

The insect egg surface can serve as a vehicle for vertical symbiont transmission from the maternal parent to its offspring. Hypochlorite and formaldehyde are two common disinfectants used for insect egg surface sterilization. Here, we explored the intestinal microecology and immune response profile of the silkworm Bombyx mori strain Dazao after disinfectant exposure by using high-throughput sequencing technology and real-time PCR analysis. After egg surface sterilization, no significant difference (P > 0.05) in overall body weight was observed among the control, sodium hypochlorite, and formaldehyde groups. 16S rRNA metagenomic sequencing revealed that the main abundant intestinal bacteria were Enterococcus, Burkholderia, Phenylobacterium, Ralstonia, Chitinophaga, Bradyrhizobium, Herbaspirillum, and two unclassified Bacteroidetes species. Egg surface sterilization evidently altered the composition and abundance of intestinal microbiota but did not significantly change its alpha diversity. The dysbiosis of intestinal microbiota resulted in the perturbation of the immune response profile of the silkworm intestine. Our findings reveal that hypochlorite has a blocking effect on the symbiont transmission compared with formaldehyde. More importantly, egg surface sterilization exerts substantial effects on the ecophysiological traits of insects. The present study contributes to the scientific and reasonable application of disinfectants for insect egg surface sterilization during industrial silk production and laboratory-scale insect rearing.


Subject(s)
Bombyx , Disinfectants , Animals , RNA, Ribosomal, 16S/genetics , Disinfectants/pharmacology , Sodium Hypochlorite , Hypochlorous Acid , Insecta , Silk , Formaldehyde
7.
Front Microbiol ; 13: 870413, 2022.
Article in English | MEDLINE | ID: mdl-35615507

ABSTRACT

The increasing demands for crop production have become a great challenge while people also realizing the significance of reductions in synthetic chemical fertilizer use. Plant growth-promoting rhizobacteria (PGPR) are proven biofertilizers for increasing crop yields by promoting plant growth via various direct or indirect mechanisms. Siderophilic bacteria, as an important type of PGPR, can secrete siderophores to chelate unusable Fe3+ in the soil for plant growth. Siderophilic bacteria have been shown to play vital roles in preventing diseases and enhancing the growth of plants. Paris polyphylla var. yunnanensis (PPVY) is an important traditional Chinese herb. However, reports about its siderophilic bacteria are still rare. This study firstly isolated siderophilic bacteria from the rhizosphere soil of PPVY, identified by morphological and physio-biochemical characteristics as well as 16S rRNA sequence analysis. The dominant genus in the rhizobacteria of PPVY was Bacillus. Among 22 isolates, 21 isolates produced siderophores. The relative amount of siderophores ranged from 4 to 41%. Most of the isolates produced hydroxamate siderophores and some produced catechol. Four isolates belonging to Enterobacter produced the catechol type, and none of them produced carboxylate siderophores. Intriguingly, 16 strains could produce substances that have inhibitory activity against Candida albicans only in an iron-limited medium (SA medium). The effects of different concentrations of Fe3+ and three types of synthetic chemical fertilizers on AS19 growth, siderophore production, and swimming motility were first evaluated from multiple aspects. The study also found that the cell-free supernatant (CFS) with high siderophore units (SUs) of AS19 strain could significantly promote the germination of pepper and maize seeds and the development of the shoots and leaves of Gynura divaricata (Linn.). The bacterial solution of AS19 strain could significantly promote the elongation of the roots of G. divaricata (Linn.). Due to its combined traits promoting plant growth and seed germination, the AS19 has the potential to become a bioinoculant. This study will broaden the application prospects of the siderophilic bacteria-AS19 as biofertilizers for future sustainable agriculture.

8.
Sci Total Environ ; 838(Pt 2): 156220, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35623528

ABSTRACT

Fluoride is a serious health risk to animals and humans. The microbiota-gut-blood barrier (MGBB) plays an indispensable role in maintaining the systematic homeostasis of host organisms. However, the toxic effects of fluoride on MGBB of organisms have not been extensively investigated. Here, we used the silkworm interspecies model to explore the adverse effects of fluoride on the gut microbiota and intestinal tissue and circulating metabolites of organisms. Results showed that fluoride exposure significantly declined the body weight gain and survival rate of organisms and evidently damaged intestinal epithelial cells. In addition, fluoride altered the composition and abundance of intestinal microbiota, which was accompanied by changing gene expression levels of antimicrobial peptides in intestinal tissue. Shifts in the relative abundance of Enterococcus, Aquabacterium, Aureimonas and Methylobacterium in the gut had significant correlations with the concentrations of certain differential metabolites (e.g., amino acids, nucleotides, and nucleotide derivatives) in the bloodstream. Moreover, most circulating metabolites in related nucleotide metabolism pathways were upregulated, whereas those in the pathways of amino acid metabolism were downregulated. This study deepens our understanding of the disruptive effect of fluoride on the MGBB of host organisms and may provide a new insight into the preventive therapy of fluoride-induced diseases.


Subject(s)
Bombyx , Gastrointestinal Microbiome , Microbiota , Animals , Bombyx/microbiology , Fluorides/toxicity , Nucleotides/pharmacology
9.
Front Microbiol ; 13: 822148, 2022.
Article in English | MEDLINE | ID: mdl-35369527

ABSTRACT

Staphylococcus haemolyticus (S. haemolyticus) is the second most commonly isolated coagulase-negative staphylococcus (CoNS) in patients with hospital-acquired infections. It can produce phenol-soluble modulin (PSM) toxins and form biofilms. Compared with the wealth of information on Staphylococcus aureus and Staphylococcus epidermidis, very little is known about S. haemolyticus. There is an urgent need to find an effective preparation to combat the harm caused by S. haemolyticus infection. Chinese herbs have been utilized to cure inflammation and infectious diseases and have a long history of anticancer function in China. Here, we modified fusaric acid characterized from the metabolites of Gibberella intermedia, an endophyte previously isolated from Polygonum capitatum. This study shows that fusaric acid analogs (qy17 and qy20) have strong antibacterial activity against S. haemolyticus. In addition, crystal violet analyses and scanning electron microscopy observations demonstrated that qy17 inhibited biofilm formation and disrupted mature biofilms of S. haemolyticus in a dose-dependent manner. Additionally, it reduced the number of live bacteria inside the biofilm. Furthermore, the antibiofilm function of qy17 was achieved by downregulating transcription factors (sigB), transpeptidase genes (srtA), and bacterial surface proteins (ebp, fbp) and upregulating biofilm-related genes and the density-sensing system (agrB). To further elucidate the bacteriostatic mechanism, transcriptomic analysis was carried out. The following antibacterial mechanisms were uncovered: (i) the inhibition of heat shock (clpB, groES, groL, grpE, dnaK, dnaJ)-, oxidative stress (aphC)- and biotin response (bioB)-related gene expression, which resulted in S. haemolyticus being unable to compensate for various stress conditions, thereby affecting bacterial growth; and (ii) a reduction in the expression of PSM-beta (PSMß1, PSMß2, PSMß3) toxin- and Clp protease (clpP, clpX)-related genes. These findings could have major implications for the treatment of diseases caused by S. haemolyticus infections. Our research reveals for the first time that fusaric acid derivatives inhibit the expression of biofilm formation-related effector and virulence genes of S. haemolyticus. These findings provide new potential drug candidates for hospital-acquired infections caused by S. haemolyticus.

10.
Int J Biol Macromol ; 209(Pt A): 299-314, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35381282

ABSTRACT

Antibiotic-resistant bacteria (including MRSA) in the clinic pose a growing threat to public health, and antimicrobial peptides (AMPs) have great potential as efficient treatment alternatives. Houseflies have evolved over long periods in complex, dirty environments, developing a special immune system to overcome challenges in harmful environments. AMPs are key innate immune molecules. Herein, two differentially expressed AMPs, Phormicins A and B, were identified by screening transcriptomic changes in response to microbial stimulation. Structural mimic assays indicated that these AMPs exhibited functional divergence due to their C-terminal features. Expression analysis showed that they had different expression patterns. Phormicin B had higher constitutive expression than Phormicin A. However, Phormicin B was sharply downregulated, whereas Phormicin A was highly upregulated, after microbial stimulation. The MIC, MBC and time-growth curves showed the antibacterial spectrum of these peptides. Crystal violet staining and SEM showed that Phormicin D inhibited MRSA biofilm formation. TEM suggested that Phormicin D disrupted the MRSA cell membrane. Furthermore, Phormicin D inhibited biofilm formation by downregulating the expression of biofilm-related genes, including altE and embp. Therefore, housefly Phormicins were functionally characterized as having differential expression patterns and antibacterial & antibiofilm activities. This study provides a new potential peptide for clinical MRSA therapy.


Subject(s)
Houseflies , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides , Biofilms , Houseflies/genetics , Microbial Sensitivity Tests
11.
Environ Microbiol ; 24(9): 4049-4064, 2022 09.
Article in English | MEDLINE | ID: mdl-35191580

ABSTRACT

The symbiotic association between bacterial symbionts and insect hosts is a complicated process that is not completely understood. Herein, we used a silkworm model to study the association between symbiotic Bacillus and lepidopteran insect by investigating the changes in intestinal microbiota and hemolymph circulating metabolites of silkworm after symbiotic Bacillus subtilis treatment. Results showed that B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host. Shifts in the relative abundance of Enterococcus, Brevibacterium, Buttiauxella, Pseudomonas, Brevundimonas and Limnobacter had significant correlations with the concentrations of differential metabolites (e.g. phospholipids and certain amino acids) in insect hemolymph. The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota. Meanwhile, the altered levels of circulating metabolites in multiple metabolic pathways were potential adaptive mechanism of insect hosts in response to the shifts of intestinal microbiota. Our findings provided concrete evidence that bacterial intestinal symbiont can alter the physiological state of insects and highlighted the importance of the compositional alterations of intestinal microbiota as a source of variation in circulating metabolites of insect hosts.


Subject(s)
Bacillus , Gastrointestinal Microbiome , Vitamin B Complex , Amino Acids/metabolism , Animals , Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Insecta/microbiology , Symbiosis/physiology , Vitamin B Complex/metabolism
12.
Biomolecules ; 12(1)2022 01 05.
Article in English | MEDLINE | ID: mdl-35053229

ABSTRACT

Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.


Subject(s)
Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/therapeutic use , Tumor Hypoxia , Humans , Neoplasms/metabolism
13.
Ecotoxicol Environ Saf ; 218: 112229, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33991993

ABSTRACT

Bombyx mori was used to study the molecular mechanism of fluoride induced reproductive toxicity. In our previous study, we confirmed the physiological and biochemical effects of NaF on reproductive toxicity, and we found that the molecular mechanism of NaF induced reproductive damage may be associated with the oxidative phosphorylation pathway. To further study the function of NaF exposure on the oxidative phosphorylation pathway in the testis in Bombyx mori, and the relationship between oxidative phosphorylation and oxidative stress, we measured the changes in the main ROS (O2- and H2O2) in the testis, the activity of the main electron transport chain complex enzymes in the oxidative phosphorylation pathway and the transcription levels of the corresponding genes; we additionally performed pathological observations of the silkworm testis after exposure to 200 mg/L NaF solution for different times. The content of O2- and H2O in the silkworm gonads increased significantly at 24 h, 72 h and 120 h after NaF stress. The activity of mitochondrial complexes I, III, IV and V in the silkworm testis was significantly greater than that in the control group. RT-PCR analysis suggested that the mRNA transcription levels of NADH-CoQ1, Cyt c reductase, Cyt c oxidase and ATP synthase genes were up-regulated significantly. Histopathological investigation showed that the damage to the silkworm testis was more severe with increasing NaF exposure times. These results indicated that NaF stress affects the NADH respiratory chain of the mitochondrial electron transport chain and increases the activity of related enzyme complexes, thus destroying the balance of the electron transport chain. Subsequently, the content of ROS in cells significantly increases, thus resulting in oxidative stress reactions in cells. These results enable better understanding of the testis-damaging molecular toxicological mechanism of NaF.

14.
Gene ; 726: 144197, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31669636

ABSTRACT

Enterococcus faecalis is one of the main components of symbiotic bacteria in the intestine of silkworm (Bombyx mori L.). The abundance of E. faecalis in the intestine of silkworm is affected by fluoride exposure. However, the response mechanism of E. faecalis toward fluoride remains largely unknown. In this study, a strain of E. faecalis (named TV4), which is a symbiotic bacteria of silkworm, was isolated and characterized. Inhibition assay showed that fluoride can significantly inhibit the growth of the TV4 strain (P < 0.05) after culture for 4 h. Finally, Illumina X-Ten platform was used to investigate the response mechanism of E. faecalis TV4 under fluoride exposure. We found that the TV4 strain demonstrated significant changes in its carbohydrate transport and metabolism and energy metabolism. The transcriptome sequencing results revealed that 237 genes were differentially expressed for TV4 grown after fluoride exposure, i.e., 92 genes were differentially up-regulated and 145 genes were differentially down-regulated. Many of the down-regulated genes were involved in cell carbohydrate transport and metabolism and energy production, whereas the up-regulated genes were mostly related to ethanolamine utilization and amino acid synthesis and metabolism. Our results revealed that strain TV4 reduced its carbohydrate metabolism and energy metabolism and increased ethanolamine utilization and amino acid metabolism to adapt and survive under fluoride exposure. This study enhances our understanding about the response mechanism of E. faecalis after fluoride exposure and has important implications for investigations on the three-way interaction among fluoride, symbiotic bacteria and silkworm.


Subject(s)
Bombyx/microbiology , Enterococcus faecalis/genetics , Fluorides/adverse effects , Animals , Down-Regulation/genetics , Gene Expression Profiling/methods , Intestines/microbiology , RNA-Seq , Transcriptome/genetics , Up-Regulation/genetics , Exome Sequencing/methods
15.
Sci Total Environ ; 692: 1282-1290, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31539960

ABSTRACT

Bacillus cereus is a foodborne pathogen that causes gastrointestinal disease in hosts. The interactions between pathogenic bacteria and silkworms (Bombyx mori L.) involve complex processes. This study aimed to investigate the potential genetic traits of B. cereus SW7-1 and profile the toxicity response of silkworm intestine upon infection by the SW7-1 pathogen. Bacterial genome sequencing and polymerase chain reaction (PCR) detection indicated that B. cereus SW7-1 possesses multiple antibiotic-resistant genes and nine virulence factor genes. Then, silkworm larvae were infected with SW7-1. Comparative transcriptomic analysis revealed that 273 differentially expressed genes (DEGs) with known functions were successfully annotated to the silkworm reference genome. Specifically, 18 DEGs were up-regulated, and 255 DEGs were down-regulated. Compared with the control group, the treated group revealed down-regulated DEGs that are related to stress reactions, immunity, autophagy and apoptosis, DNA replication, ribosomal stress, and carbohydrate metabolism. Quantitative real time PCR analysis showed that many key genes in the Toll pathway, immune deficiency pathway, Janus kinase/signal transducers and activators of transcription pathway, and melanization reaction were up-regulated. Thus, B. cereus SW7-1 pathogen could damage the silkworm intestine, as confirmed by the histological section assay. In addition, SW7-1 can affect the normal physiological functions of intestinal cells. This study contributes toward an improved understanding of the toxicity response of silkworm to the B. cereus pathogen and provides new insights into the molecular mechanisms of the complex interactions between pathogenic microbes and silkworms.


Subject(s)
Bacillus cereus , Bombyx , Host-Pathogen Interactions , Intestines/microbiology , Animals
16.
Wei Sheng Wu Xue Bao ; 55(7): 926-34, 2015 Jul 04.
Article in Chinese | MEDLINE | ID: mdl-26710611

ABSTRACT

OBJECTIVE: We examined the effect of fluoride on gut microflora of silkworm. METHODS: After DNA extraction and PCR amplification, clone libraries of 16S rRNA gene fragment were constructed. Amplified ribosomal DNA restriction analysis (ARDRA) was performed by digestion of the 16S rRNA gene, and each unique restriction fragment polymorphism pattern was designated as an operational taxonomic unit (OTU). A total of 14 OTUs were identified from intestinal samples of both T6 and 734. Phylogenetic trees of bacterial 16S rRNA nucleotide sequences were constructed and analyzed. Furthermore, the dominant bacteria were studied by the nested polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DDGE) technology. RESULTS: After fluorosis, the flora of Enterococcus and Bacillus reduced. However, the flora of Staphylococcus increased. CONCLUSION: Fluoride can destroy the balance of microflora in the gut of silkworm by changing the bacteria diversity and proportion, which has bigger effect to 734 than T6.


Subject(s)
Bacteria/drug effects , Bacteria/isolation & purification , Bombyx/microbiology , Fluorides/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Intestines/drug effects , Intestines/microbiology , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Appl Biochem Biotechnol ; 175(7): 3447-57, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25712907

ABSTRACT

Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin.


Subject(s)
Arylalkylamine N-Acetyltransferase/genetics , Bombyx/enzymology , Pigmentation/genetics , Animals , Arylalkylamine N-Acetyltransferase/biosynthesis , Arylalkylamine N-Acetyltransferase/metabolism , Gene Expression Regulation, Enzymologic , Integumentary System , Melanins/biosynthesis , Melatonin/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...