Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; : e17412, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780141

ABSTRACT

Homoploid hybrid speciation is challenging to document because hybridization can lead to outcomes other than speciation. Thus, some authors have argued that establishment of homoploid hybrid speciation should include evidence that reproductive barriers isolating the hybrid neo-species from its parental species were derived from hybridization. While this criterion is difficult to satisfy, several recent papers have successfully employed a common pipeline to identify candidate genes underlying such barriers and (in one case) to validate their function. We describe this pipeline, its application to several plant and animal species and what we have learned about homoploid hybrid speciation as a consequence. We argue that - given the ubiquity of admixture and the polygenic basis of reproductive isolation - homoploid hybrid speciation could be much more common and more protracted than suggested by earlier conceptual arguments and theoretical studies.

2.
Mol Plant ; 17(5): 725-746, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38486452

ABSTRACT

Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.


Subject(s)
Genome, Plant , Populus , Populus/genetics , Trees/genetics , Adaptation, Physiological/genetics , Forests , Genomics , Transcriptome/genetics
3.
BMC Genomics ; 25(1): 29, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172664

ABSTRACT

BACKGROUND: Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS: In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION: Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.


Subject(s)
Brassicaceae , Plant Breeding , Humans , Gene Expression Profiling , Brassicaceae/genetics , Brassicaceae/metabolism , Seeds/metabolism , Fatty Acids/metabolism , Plant Oils/analysis , Gene Expression Regulation, Plant
4.
Nat Commun ; 13(1): 6541, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319648

ABSTRACT

Rapid global climate change is posing a substantial threat to biodiversity. The assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation and mitigation strategies. Here we generate a chromosome-scale genome assembly and re-sequence genomes of 230 individuals collected from 24 populations for Populus koreana, a pioneer and keystone tree species in temperate forests of East Asia. We integrate population genomics and environmental variables to reveal a set of climate-associated single-nucleotide polymorphisms, insertion/deletions and structural variations, especially numerous adaptive non-coding variants distributed across the genome. We incorporate these variants into an environmental modeling scheme to predict a highly spatiotemporal shift of this species in response to future climate change. We further identify the most vulnerable populations that need conservation priority and many candidate genes and variants that may be useful for forest tree breeding with special aims. Our findings highlight the importance of integrating genomic and environmental data to predict adaptive capacity of a key forest to rapid climate change in the future.


Subject(s)
Plant Breeding , Trees , Humans , Trees/physiology , Forests , Climate Change , Genomics
5.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35022759

ABSTRACT

Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.


Subject(s)
Genome, Plant , Populus , Hybridization, Genetic , Mutation , Populus/genetics , Selection, Genetic
6.
Mol Breed ; 42(4): 25, 2022 Apr.
Article in English | MEDLINE | ID: mdl-37309465

ABSTRACT

Cucumber (Cucumis sativus L.) is an important vegetable crop that is popular with many people. Peel gloss is a highly valued external quality trait that affects the market value of cucumbers, and it directly influences the purchasing psychology of consumers. Nonetheless, the candidate genes and underlying genetic mechanism for this important cucumber trait are not well understood. In this study, we successfully mapped a fruit skin gloss QTL interval to chromosome 3 (26.04-26.14 Mb) using BSA and GWAS methods. Among the eleven candidate genes in the interval, the cytochrome P450 family gene CsCYP86B1 was identified as the candidate for control of fruit skin gloss in cucumber. The expression of CsCYP86B1 in 0-day fruit skin was significantly lower in the low-gloss isogenic line NIL-1334 than in the high-gloss isogenic line NIL-1325. Our findings provide new insights for improving fruit skin gloss in cucumber breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01291-y.

SELECTION OF CITATIONS
SEARCH DETAIL
...