Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Surg Case Rep ; 99: 107569, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36108376

ABSTRACT

INTRODUCTION AND IMPORTANCE: We used induced membrane combined with tissue-engineered bone (TEB) to repair the 14-cm juvenile ulnar defect formed after osteomyelitis debridement. The TEB was completely transformed into autologous bone after 4-year follow-up. CASE PRESENTATION: A 13-year-old male was hospitalized because of right ulna chronic osteomyelitis. After focal debridement, the total length of ular defect was 14 cm. Anti-infective bone cement was filled in the bone defect area. ß-Tricalcium phosphate (ß-TCP) was used as TEB scaffold. Autologous iliac bone marrow stromal cells (BMSCs) were cultured in vitro and were planted on ß-TCP scaffold to form TEB 3 weeks later. 47 months after implantation of TEB, the repaired ulna had continuous and smooth bone cortex, completely ossification of TEB, completely recanalization of medullary cavity. The upper limb function DASH score was 35. CLINICAL DISCUSSION: Masquelet put forward the concept of "induced membrane" and applied this technique on bone defects treatment formed after debridement of osteomyelitis. ß-Tricalcium phosphate (ß-TCP) is artificial bone materials commonly used in clinical. In this case, the seed cells used were autologous BMSCs and the culture medium was autologous serum. Cytokines promoting cell growth and differentiation were not used. CONCLUSION: The results of this case showed that TEB combined with induced membrane could repair ulna segmental bone defects as long as 14 cm in adolescents. This technique gives one alternative method to repair juvenile bone defects caused by osteomyelities of trauma. More clinical cases are needed to verify the effectiveness of this technique in the next.

2.
Int J Surg Case Rep ; 94: 107057, 2022 May.
Article in English | MEDLINE | ID: mdl-35461180

ABSTRACT

INTRODUCTION AND IMPORTANCE: This case report describes the reconstruction of the traumatic distal fibular and lateral malleolus defects with a novel method of using individualized 3D printed titanium prosthesis for the first time. CASE PRESENTATION: A 63-year-old male farmer was hospitalized in emergency because of open injury and distal fibular and lateral malleolus defects in the left leg caused by a car accident. 3 months after debridement and latissimus dorsi muscle flap transplantation and skin graft operation, the patient re-hospitalized because of distal fibular and lateral malleolus defect and local pain. We examined the bilateral ankle joint with three-dimensional CT, obtained data about the missing left distal fibular and lateral malleolus through the mirror principle. The corresponding titanium alloy prosthesis then was designed and printed using a 3D metal printer. The patient had no obvious contraindication for surgery, so the prosthesis was surgically implanted. The patient was followed up for 2 years. There was no discomfort at the surgical site. The function of the operated ankle was satisfied by the patient, the AOFAS (American Orthopaedic Foot & Ankle Society) score was 85 (Kitaoka et al., 1994 [1]). CLINICAL DISCUSSION: Individualized 3D printed titanium alloy prosthesis consistent with the anatomical structure of lost distal fibula and lateral malleolus. The proximal end of the prosthesis was designed with four nail holes to install screws to fix the fibula together with it. The lower tibiofibular and talofibular joint surfaces of the prosthesis were designed smoothly. In order to improve the stability of the lower tibiofibular joint, anchors were placed at the attachment of the anterior and posterior tibiofibular ligaments to reconstruct these ligaments. CONCLUSION: The structure and function of the reconstructed distal fibular and the lateral malleous were close to normal. Individualized 3D printed prosthesis might have considerable advantages over traditional treatment methods. The individualized 3D printed titanium alloy prosthesis provides a new method for the repair and reconstruction of similar bone defects. The use of 3D printed prosthesis for surgical repair needs to be further examined in the future through long-term follow-up studies and in more cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...