Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(1): 014001, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478448

ABSTRACT

Recently, the discovery of optical spatiotemporal (ST) vortex beams with transverse orbital angular momentum (OAM) has attracted increasing attention and is expected to extend the research scope and open new opportunities for practical applications of OAM states. The ST vortex beams are also applicable to other physical fields that involve wave phenomena, and here we develop the ST vortex concept in the field of acoustics and report the generation of Bessel-type ST acoustic vortex beams. The ST vortex beams are fully characterized using the scalar approach for the pressure field and the vector approach for the velocity field. We further investigate the transverse spreading effect and construct ST vortex beams with an ellipse-shaped spectrum to reduce the spreading effect. We also experimentally demonstrated the orthogonality relations between ST vortex beams with different charges. Our study successfully demonstrates the versatility of the acoustic system for exploring and discovering spatiotemporally structured waves, inspiring further investigation of exotic wave physics.

2.
J Environ Sci (China) ; 124: 50-60, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182158

ABSTRACT

Phosphorus (P) in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment. The mobility and bioavailability of P primarily depend on the contents of different P forms, which in turn depend on the sedimentary environment. Here, sediment samples from Baiyangdian (BYD) lake were collected and measured by the Standards, Measurements, and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) to characterize different P forms and their relationships with sediment physicochemical properties. The P content in the sediments varied in different areas and had characteristics indicative of exogenous river input. Inorganic P (334-916 mg/kg) was the dominant form of P. The 31P NMR results demonstrated that orthophosphate monoesters (16-110 mg/kg), which may be a source of P when redox conditions change, was the dominant form of organic P (20-305 mg/kg). The distribution of P forms in each region varied greatly because of the effects of anthropogenic activities, and the regions affected by exogenous river input had a higher content of P and a higher risk of P release. Principal component analysis indicated that P bound to Fe, Al, and Mn oxides and hydroxides (NaOH-P) and organic P were mainly derived from industrial and agricultural pollution, respectively. Redundancy analysis indicated that increases in pH lead to the release of NaOH-P. Organic matter plays an important role in the organic P biogeochemical cycle, as it acts as a sink and source of organic P.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Oxides/analysis , Phosphates/analysis , Phosphorus/analysis , Sodium Hydroxide , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 852: 158433, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36055482

ABSTRACT

Under the influence of environmental change, disturbance and other external conditions, sediments release internal nutrients to the overlying water and become a contamination source in the lake. Complex habitat systems provide a unique opportunity for determining the influences of environmental changes in lakes. In this study, Baiyangdian Lake (BYDL) was divided into different habitat systems (connected water areas, river courses, reed fields, lotus ponds, fishponds, farmland, and thorps) based on the influence of natural and artificial activities. The physical and chemical properties of overlying water and sediment in different habitat systems were investigated. In addition, statistical analytical methods were used to analyze the relationship between sediment characteristics and overlying water parameters in different habitat systems. The results showed that nitrogen and phosphorus in the overlying water could accumulate in the sediments, while disturbance was one of the main factors affecting the release of nutrients from sediments. Disturbance promoted the suspension of sediments and increased the oxygen content, thereby facilitating the internal release of nutrients. However, there were also some differences in the process of internal release of nutrients between the habitat systems. Nitrogen in the overlying water was closely related to the source of organic matter (r > 0.950), especially in the ponds (including lotus ponds, reed fields, and fishponds), and phosphorus was mainly influenced by turbidity (r > 0.870). In the river course (p = 0.198, n = 26), the disturbance and increase in pH promoted the internal release of nutrients from the sediments (contributions of 35.2 % and 25.1 %, respectively). In the ponds, the aquatic macrophytes reduced the release of nitrogen and phosphorus in sediments. Overall, this study provides more information on the migration and transformation of nutrients between sediment and overlying water in lakes with multiple habitats.


Subject(s)
Geologic Sediments , Water Pollutants, Chemical , Geologic Sediments/chemistry , Water/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Lakes/chemistry , Phosphorus/analysis , Nitrogen/analysis , Ecosystem , Nutrients/analysis , Oxygen/analysis , China
4.
Environ Pollut ; 289: 117852, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34330015

ABSTRACT

Anthropogenic activities significantly influence the lake environment and are reflected by the element contents in sediments/soils. The lake fragmentation provides a unique opportunity for comparing the influences of natural/anthropogenic activities of different wetlands systems. In this study, a complex and fragmented lake was investigated, and sediment/soil samples were collected from different systems. The nutrient contents (C, N, and P), stable isotopic compositions (δ13C and δ15N), and trace metal contents (As, Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments/soils were measured to determine the natural and anthropogenic influences and pollution sources. Lake fragmentation was caused by insufficient water input and long-term agricultural and aquacultural activities of local residents. Due to the effect of anthropogenic activities, the enrichment conditions of various elements differed significantly for different wetland systems. Industrial, agricultural, and biological sources significantly influenced the element enrichment in different systems. The results demonstrated that the anthropogenic activities significantly influenced the sediments/soils in wetland systems, and the lake fragmentation reduced the diffusion of the contaminants. These results provide accurate reference information for pollution control, lake management, and ecological restoration.


Subject(s)
Metals, Heavy , Trace Elements , Environmental Monitoring , Geologic Sediments , Isotopes , Metals, Heavy/analysis , Trace Elements/analysis , Wetlands
5.
Chemosphere ; 237: 124425, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31352101

ABSTRACT

Baiyangdian Lake (BYDL) is the largest plant-dominated freshwater wetland in the North China Plain. It plays an important role in supporting the construction of Xiongan New Area. Heavy metals contents (As, Cd, Cu, Cr, Ni, Pb, and Zn) in the sediments from BYDL are investigated to determine their spatial distribution and potential ecological risk in this study. Then the relationship and sources of contaminants were analyzed using a multivariate visual statistical analysis. The risk assessment results reveal that the surface sediments of BYDL are moderately to highly polluted by heavy metals, and the primary contaminants are Cd, Pb, and Zn. The spatial distribution of high potential risk regions mainly concentrate in the stream corridor between the east and west of the lake, and the distribution of high potential risk level of Cd, Pb, and Zn occur in a similar region. Additionally, exogenetic heavy metals are accumulated in the sediment cores within a depth of 16 cm, and their contents and risk decreased sharply with the increasing of depth. Furthermore, the results of statistical analysis implied that the Cd, Pb, and Zn in sediments are derived from industrial sources, the As and Cr from the geological process and the nutrients are from the nonpoint agricultural pollution. Overall, this study gives more information about the ecological risk distribution and pollution sources of BYDL, which is essential for the strategic design of future pollution control and environmental remediation.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Geologic Sediments/chemistry , Lakes/chemistry , Metals, Heavy/analysis , China , Ecology , Geologic Sediments/analysis , Multivariate Analysis , Risk Assessment , Rivers/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...