Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10391, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369699

ABSTRACT

Cognitive cloud computing in space (3CS) describes a new frontier of space innovation powered by Artificial Intelligence, enabling an explosion of new applications in observing our planet and enabling deep space exploration. In this framework, machine learning (ML) payloads-isolated software capable of extracting high level information from onboard sensors-are key to accomplish this vision. In this work we demonstrate, in a satellite deployed in orbit, a ML payload called 'WorldFloods' that is able to send compressed flood maps from sensed images. In particular, we perform a set of experiments to: (1) compare different segmentation models on different processing variables critical for onboard deployment, (2) show that we can produce, onboard, vectorised polygons delineating the detected flood water from a full Sentinel-2 tile, (3) retrain the model with few images of the onboard sensor downlinked to Earth and (4) demonstrate that this new model can be uplinked to the satellite and run on new images acquired by its camera. Overall our work demonstrates that ML-based models deployed in orbit can be updated if new information is available, paving the way for agile integration of onboard and onground processing and "on the fly" continuous learning.

2.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36992055

ABSTRACT

Recent developments in Distributed Satellite Systems (DSS) have undoubtedly increased mission value due to the ability to reconfigure the spacecraft cluster/formation and incrementally add new or update older satellites in the formation. These features provide inherent benefits, such as increased mission effectiveness, multi-mission capabilities, design flexibility, and so on. Trusted Autonomous Satellite Operation (TASO) are possible owing to the predictive and reactive integrity features offered by Artificial Intelligence (AI), including both on-board satellites and in the ground control segments. To effectively monitor and manage time-critical events such as disaster relief missions, the DSS must be able to reconfigure autonomously. To achieve TASO, the DSS should have reconfiguration capability within the architecture and spacecraft should communicate with each other through an Inter-Satellite Link (ISL). Recent advances in AI, sensing, and computing technologies have resulted in the development of new promising concepts for the safe and efficient operation of the DSS. The combination of these technologies enables trusted autonomy in intelligent DSS (iDSS) operations, allowing for a more responsive and resilient approach to Space Mission Management (SMM) in terms of data collection and processing, especially when using state-of-the-art optical sensors. This research looks into the potential applications of iDSS by proposing a constellation of satellites in Low Earth Orbit (LEO) for near-real-time wildfire management. For spacecraft to continuously monitor Areas of Interest (AOI) in a dynamically changing environment, satellite missions must have extensive coverage, revisit intervals, and reconfiguration capability that iDSS can offer. Our recent work demonstrated the feasibility of AI-based data processing using state-of-the-art on-board astrionics hardware accelerators. Based on these initial results, AI-based software has been successively developed for wildfire detection on-board iDSS satellites. To demonstrate the applicability of the proposed iDSS architecture, simulation case studies are performed considering different geographic locations.

3.
Mar Pollut Bull ; 131(Pt B): 33-39, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29106935

ABSTRACT

The Indonesian fisheries management system is now equipped with the state-of-the-art technologies to deter and combat Illegal, Unreported and Unregulated (IUU) fishing. Since October 2014, non-cooperative fishing vessels can be detected from spaceborne Vessel Detection System (VDS) based on high resolution radar imagery, which directly benefits to coordinated patrol vessels in operation context. This study attempts to monitor the amount of illegal fishing in the Arafura Sea based on this new source of information. It is analyzed together with Vessel Monitoring System (VMS) and satellite-based Automatic Identification System (Sat-AIS) data, taking into account their own particularities. From October 2014 to March 2015, i.e. just after the establishment of a new moratorium by the Indonesian authorities, the estimated share of fishing vessels not carrying VMS, thus being illegal, ranges from 42 to 47%. One year later in January 2016, this proportion decreases and ranges from 32 to 42%.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Fisheries/legislation & jurisprudence , Radar , Animals , Indonesia , Satellite Communications , Ships
SELECTION OF CITATIONS
SEARCH DETAIL
...