Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Neuroscience ; 376: 204-223, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29555037

ABSTRACT

Collapsin Response Mediator Protein 2 (CRMP2) is an intracellular protein involved in axon and dendrite growth and specification. In this study, CRMP2 was identified in a conditioned media derived from degenerated sciatic nerves (CM). On cultured rat hippocampal neurons, acute extracellular application of CM or partially purified recombinant CRMP2 produced an increase in cytoplasmic calcium. The increase in cytoplasmic calcium was mostly mediated through NMDA receptors, with a minor contribution of N-type VDCC, and it was maintained as long as CM was present. By using live-labeling of CRMP2, Ca2+ channel binding domain 3 (CBD3) peptide derived from CRMP2, and recombinant CRMP2, we demonstrated that that this effect was mediated by an action on the extracellular side of the NMDA receptor. This is the first report of an extracellular action of CRMP2. Prolonged exposure to extracellular CRMP2, may contribute to neuronal calcium dysregulation and neuronal damage.


Subject(s)
Calcium/metabolism , Central Nervous System Agents/administration & dosage , Cytoplasm/drug effects , Intercellular Signaling Peptides and Proteins/administration & dosage , Nerve Tissue Proteins/administration & dosage , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cations, Divalent/metabolism , Cells, Cultured , Central Nervous System Agents/isolation & purification , Culture Media, Conditioned , Cytoplasm/metabolism , Extracellular Space , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Molecular Docking Simulation , Nerve Tissue Proteins/isolation & purification , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Optic Nerve/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Recombinant Proteins/administration & dosage , Sciatic Nerve/metabolism
2.
J Vis Exp ; (107): e52932, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26863287

ABSTRACT

Pharmacological treatment in animal models of cerebral disease imposes the problem of repeated injection protocols that may induce stress in animals and result in impermanent tissue levels of the drug. Additionally, drug delivery to the brain is delicate due to the blood brain barrier (BBB), thus significantly reducing intracerebral concentrations of selective drugs after systemic administration. Therefore, a system that allows both constant drug delivery without peak levels and circumvention of the BBB is in order to achieve sufficiently high intracerebral concentrations of drugs that are impermeable to the BBB. In this context, miniosmotic pumps represent an ideal system for constant drug delivery at a fixed known rate that eludes the problem of daily injection stress in animals and that may also be used for direct brain delivery of drugs. Here, we describe a method for miniosmotic pump implantation and post operatory care that should be given to animals in order to successfully apply this technique. We embed the aforementioned experimental paradigm in standard procedures that are used for studying neuroplasticity within the brain of C57BL6 mice. Thus, we exposed animals to 30 min brain infarct and implanted with miniosmotic pumps connected to the skull via a cannula in order to deliver a pro-plasticity drug. Behavioral testing was done during 30 days of treatment. After removal the animals received injections of anterograde tract tracers to analyze neuronal plasticity in the chronic phase of recovery. Results indicated that neuroprotection by the delivered drug was accompanied with increase in motor fibers crossing the midline of the brain at target structures. The results affirm the value of these techniques for drug administration and brain plasticity studies in modern neuroscience.


Subject(s)
Brain/physiopathology , Infusion Pumps, Implantable , Animals , Biotin/administration & dosage , Biotin/analogs & derivatives , Brain/drug effects , Brain Diseases/physiopathology , Brain Infarction/physiopathology , Dextrans/administration & dosage , Drug Delivery Systems , Fluorescent Dyes/administration & dosage , Mice , Mice, Inbred C57BL , Motor Cortex/drug effects , Motor Cortex/physiopathology , Neuronal Plasticity/drug effects , Stilbamidines/administration & dosage
3.
Front Cell Neurosci ; 9: 364, 2015.
Article in English | MEDLINE | ID: mdl-26441535

ABSTRACT

Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the CM, is one of the main inhibitors of full neuronal differentiation, acting through sortilin receptor.

4.
Invest. clín ; 51(4): 501-518, dic. 2010. ilus, tab
Article in Spanish | LILACS | ID: lil-630908

ABSTRACT

Los cultivos neuronales del sistema nervioso central se han venido usando ampliamente para el estudio de los mecanismos que conducen el proceso de diferenciación neuronal, así como también se han empleado como modelos in vitro para evaluar drogas y desarrollar nuevas terapias, de allí la importancia profundizar en la caracterización de dicho proceso. En este estudio, se prepararon cultivos primarios de células del hipocampo para estudiar los tipos celulares desarrollados, el desarrollo de dendritas y axones, la densidad de vesículas sinápticas y el desarrollo de los conos de crecimiento. Mediante inmunofluorescencia usando anticuerpos y marcadores no inmunológicos, se observaron los cambios experimentados por las estructuras de interés durante diferentes estadios temporales (1-21 días). Observamos una mayor proporción de neuronas sobre glias, desarrollo normal de las redes neuronales (conformadas por dendritas y axones), incremento en la longitud de dendritas y el establecimiento de sinapsis. Las vesículas sinápticas también experimentaron un incremento en su densidad a medida que aumentaba el tiempo de cultivo. Finalmente, se estudiaron los cambios morfológicos de los conos de crecimiento observándose que al inicio del cultivo en su mayoría se encontraban cerrados, pero a medida que maduraban las neuronas la proporción de conos de crecimiento abiertos aumentó. Este trabajo representa un avance en la caracterización morfométrica de los cultivos neuronales puesto que recoge de manera simultánea y cuantitativa los principales aspectos que marcan el proceso de diferenciación neuronal. En este estudio, la medición de estas características morfológicas hizo posible establecer parámetros cuantitativos que ayudarán a distinguir las principales etapas de la diferenciación neuronal.


Neuronal cultures of the central nervous system are widely used to study the molecular mechanisms that rule the differentiation process. These cultures have also been used to evaluate drugs and to develop new therapies. From this we can infer the relevance of performing an extended characterization that involves the main aspects driving such process. To carry out such characterization in the present study we prepared primary cultures from hippocampal cells to study cell identity, development of neuronal processes (dendrites and axons), density of synaptic vesicles and development of growth cones. Using immunofluorescence techniques, specific antibodies and non-immunological probes, we studied the changes experienced by the structures under study during different temporal stages (1-21 days). We observed a major proportion of neurons over glia, normal development of neuronal networks (formed by dendrites and axons), increase in the length of dendrites and axons and establishment of synaptic connections. Synaptic vesicles also showed an increase in their densities as long as the time of the culture progressed. Finally, we studied the morphological changes of the growth cones and observed that those were mostly closed at the beginning of the culture period. As neurons matured we observed an increase in the proportion of open growth cones. This work represents an advance in the morphometric characterization of neuronal cultures, since it gathers the main aspects that outline the neuronal differentiation process. In this study, measurement of these morphological features made possible to establish quantitative markers that will allow establishing more precisely the different stages of neuronal differentiation.


Subject(s)
Animals , Rats , Hippocampus/cytology , In Vitro Techniques , Neurogenesis , Neurons/cytology , Axons/ultrastructure , Cells, Cultured/cytology , Dendrites/ultrastructure , Growth Cones/ultrastructure , Hippocampus/embryology , Microscopy, Fluorescence , Microscopy, Interference , Neuroglia/cytology , Rats, Sprague-Dawley , Synaptic Vesicles/ultrastructure
5.
Invest Clin ; 51(4): 501-18, 2010 Dec.
Article in Spanish | MEDLINE | ID: mdl-21365877

ABSTRACT

Neuronal cultures of the central nervous system are widely used to study the molecular mechanisms that rule the differentiation process. These cultures have also been used to evaluate drugs and to develop new therapies. From this we can infer the relevance of performing an extended characterization that involves the main aspects driving such process. To carry out such characterization in the present study we prepared primary cultures from hippocampal cells to study cell identity, development of neuronal processes (dendrites and axons), density of synaptic vesicles and development of growth cones. Using immunofluorescence techniques, specific antibodies and non-immunological probes, we studied the changes experienced by the structures under study during different temporal stages (1-21 days). We observed a major proportion of neurons over glia, normal development of neuronal networks (formed by dendrites and axons), increase in the length of dendrites and axons and establishment of synaptic connections. Synaptic vesicles also showed an increase in their densities as long as the time of the culture progressed. Finally, we studied the morphological changes of the growth cones and observed that those were mostly closed at the beginning of the culture period. As neurons matured we observed an increase in the proportion of open growth cones. This work represents an advance in the morphometric characterization of neuronal cultures, since it gathers the main aspects that outline the neuronal differentiation process. In this study, measurement of these morphological features made possible to establish quantitative markers that will allow establishing more precisely the different stages of neuronal differentiation.


Subject(s)
Hippocampus/cytology , Neurogenesis , Neurons/cytology , Animals , Axons/ultrastructure , Cells, Cultured/cytology , Dendrites/ultrastructure , Growth Cones/ultrastructure , Hippocampus/embryology , In Vitro Techniques , Microscopy, Fluorescence , Microscopy, Interference , Neuroglia/cytology , Rats , Rats, Sprague-Dawley , Synaptic Vesicles/ultrastructure
6.
Novartis Found Symp ; 289: 165-77; discussion 177-9, 193-5, 2008.
Article in English | MEDLINE | ID: mdl-18497102

ABSTRACT

Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.


Subject(s)
Brain/physiopathology , Neuregulins/physiology , Neuronal Plasticity/physiology , Schizophrenia/physiopathology , Genetic Variation , Humans , Long-Term Potentiation , Neuregulin-1/physiology , Neuregulins/genetics , Receptor, ErbB-2/physiology , Signal Transduction
7.
J Neurosci ; 25(41): 9378-83, 2005 Oct 12.
Article in English | MEDLINE | ID: mdl-16221846

ABSTRACT

Neuregulin-1 (NRG-1) has been identified genetically as a schizophrenia susceptibility gene, but its function in the adult brain is unknown. Here, we show that NRG-1beta does not affect basal synaptic transmission but reverses long-term potentiation (LTP) at hippocampal Schaffer collateral-->CA1 synapses in an activity- and time-dependent manner. Depotentiation by NRG-1beta is blocked by two structurally distinct and selective ErbB receptor tyrosine kinase inhibitors. Moreover, ErbB receptor inhibition increases LTP at potentiated synapses and blocks LTP reversal by theta-pulse stimuli. NRG-1beta selectively reduces AMPA, not NMDA, receptor EPSCs and has no effect on paired-pulse facilitation ratios. Live imaging of hippocampal neurons transfected with receptors fused to superecliptic green fluorescent protein, as well as quantitative analysis of native receptors, show that NRG-1beta stimulates the internalization of surface glutamate receptor 1-containing AMPA receptors. This novel regulation of LTP by NRG-1 has important implications for the modulation of synaptic homeostasis and schizophrenia.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation/physiology , Neuregulin-1/pharmacology , Neuregulin-1/physiology , Synapses/physiology , Animals , Hippocampus/drug effects , Humans , In Vitro Techniques , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Synapses/drug effects
8.
J Comp Neurol ; 472(2): 156-72, 2004 Apr 26.
Article in English | MEDLINE | ID: mdl-15048684

ABSTRACT

Neuregulin-1 (NRG-1) regulates numerous aspects of neural development and synaptic plasticity; the functions of NRG-2 and NRG-3 are presently unknown. As a first step toward understanding how NRGs contribute to distinct aspects of neural development and function, we characterized their regional and subcellular expression patterns in developing brain. The expression of NRG-1-3 mRNAs was compared postnatally (P0, P7, adult) by using in situ hybridization. NRG-1 expression is highest at birth, whereas NRG-2 mRNA levels increase with development; expression of both genes is restricted to distinct brain regions. In contrast, NRG-3 transcripts are abundant in most brain regions throughout development. NRG-2 antibodies were generated to analyze protein processing, expression, and subcellular distribution. As with NRG-1, the transmembrane NRG-2 proprotein is proteolytically processed in transfected HEK 293 cells and in neural tissues, and its ectodomain is exposed and accumulates on the neuron surface. Despite the structural similarities between NRG-1 and NRG-2, we unexpectedly found that NRG-2 colocalizes with MAP2 in proximal primary dendrites of hippocampal neurons in culture and in vivo, although it is not detectable in axons or in axon terminals. These findings were confirmed with NRG-2 ectodomain antisera and epitope-tagged recombinant protein. In cerebellum, NRG-2 colocalizes with calbindin in proximal dendrites and soma of Purkinje cells. In contrast, NRG-1 is highly expressed in axons of dissociated hippocampal neurons, as well as in somas and dendrites. The distinct temporal, regional, and subcellular expression of NRG-2 suggests its unique and nonredundant role in neural function.


Subject(s)
Dendrites/metabolism , Gene Expression Regulation, Developmental/physiology , Hippocampus/growth & development , Nerve Growth Factors/metabolism , Animals , Animals, Newborn , Cells, Cultured , Dendrites/chemistry , Dendrites/genetics , Hippocampus/cytology , Hippocampus/physiology , Humans , Mice , Nerve Growth Factors/biosynthesis , Nerve Growth Factors/genetics , Neuregulin-1/metabolism , Neurons/chemistry , Neurons/metabolism , Protein Processing, Post-Translational , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...