Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33274502

ABSTRACT

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Subject(s)
Ecosystem , Environmental Science , Biodiversity , Ecology , Soil
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190527, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892725

ABSTRACT

Severe drought events are known to cause important reductions of gross primary productivity (GPP) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate VCMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter (G1, related to SOL) of the Medlyn et al. unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Forests , Trees/physiology , Europe , Plant Stomata/physiology
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190524, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892732

ABSTRACT

Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Farms , Forests , Grassland , Wetlands , Europe
4.
Sci Rep ; 6: 28269, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301671

ABSTRACT

Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.


Subject(s)
Droughts , Remote Sensing Technology , Forests , France , Photosynthesis
5.
Ecol Evol ; 6(20): 7352-7366, 2016 10.
Article in English | MEDLINE | ID: mdl-28725403

ABSTRACT

The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site-years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra- and interspecific trait variation on ecosystem functioning.

6.
Sensors (Basel) ; 11(8): 7954-81, 2011.
Article in English | MEDLINE | ID: mdl-22164055

ABSTRACT

This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903-"Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe" that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites.


Subject(s)
Environmental Monitoring/methods , Optics and Photonics , Radiometry/methods , Biophysics/methods , Calibration , Climate , Climate Change , Conservation of Natural Resources , Cost-Benefit Analysis , Ecosystem , Electronic Data Processing , Europe , International Cooperation , Light , Reproducibility of Results , Surveys and Questionnaires , Time Factors
7.
Philos Trans R Soc Lond B Biol Sci ; 365(1555): 3227-46, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-20819815

ABSTRACT

We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an 'extra' day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.


Subject(s)
Climate Change , Ecosystem , Models, Biological , Photosynthesis/physiology , Seasons , Trees/growth & development , Canada , Statistics, Nonparametric
8.
Tree Physiol ; 20(1): 23-32, 2000 Jan.
Article in English | MEDLINE | ID: mdl-12651523

ABSTRACT

A dynamic, closed-chamber infrared gas analysis (IRGA) system (DC-1: CIRAS-1, PP-Systems, Hitchin, U.K.) was compared with three other systems for measuring soil CO(2) efflux: the soda lime technique (SL), the eddy correlation technique (EC), and another dynamic, closed-chamber IRGA system (DC-2: LI-6250, Li-Cor, Inc., Lincoln, NE). Among the four systems, the DC-1 systematically gave the highest flux rates. Relative to DC-1, SL, EC and DC-2 underestimated fluxes by 10, 36 and 46%, respectively. These large and systematic differences highlight uncertainties in comparing fluxes from different sites obtained with different techniques. Although the three chamber methods gave different results, the results were well correlated. The SL technique underestimated soil CO(2) fluxes compared with the DC-1 system, but both methods agreed well when the SL data were corrected for the underestimation at higher fluxes, indicating that inter-site comparisons are possible if techniques are properly crosscalibrated. The EC was the only system that was not well correlated with DC-1. Under low light conditions, EC values were similar to DC-1 estimates, but under high light conditions the EC system seriously underestimated soil fluxes. This was probably because of interference by the photosynthetic activity of a moss layer. Although below-canopy EC fluxes are not necessarily well suited for measuring soil CO(2) efflux in natural forest ecosystems, they provide valuable information about understory gas exchange when used in tandem with soil chambers.

SELECTION OF CITATIONS
SEARCH DETAIL
...