Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Respir Care ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981652

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) systems employ different methods to provide aerosol to patients. This study compared delivery efficiency, particle size, and regional deposition of aerosolized bronchodilators during HFNC in neonatal, pediatric, and adult upper-airway and lung models between a proximal aerosol adapter and distal aerosol circuit chamber. METHODS: A filter was connected to the upper airway to a spontaneously breathing lung model. Albuterol was nebulized using the aerosol adapter and circuit at different clinical flow settings. The aerosol mass deposited in the upper airway and lung was quantified. Particle size was measured with a laser diffractometer. Regional deposition was assessed with a gamma camera at each nebulizer location and patient model with minimum flow settings. RESULTS: Inhaled lung doses ranged from 0.2-0.8% for neonates, 0.2-2.2% for the small child, and 0.5-5.2% for the adult models. Neonatal inhaled lung doses were not different between the aerosol circuit and adapter, but the aerosol circuit showed marginally greater lung doses in the pediatric and adult patient models. Impacted aerosols and condensation in the non-heated HFNC and aerosol delivery components contributed to the dispersion of coarse liquid droplets, high deposition (11-44%), and occlusion of the supine neonatal upper airway. In contrast, the upright pediatric and adult upper-airway models had minimal deposition (0.3-7.0%) and high fugitive losses (∼24%) from liquid droplets leaking out of the nose. The high impactive losses in the aerosol adapter (56%) were better contained than in the aerosol circuit, resulting in less cannula sputter (5% vs 22%), fewer fugitive losses (18% vs 24%), and smaller inhaled aerosols (5 µm vs 13 µm). CONCLUSIONS: The inhaled lung dose was low (1-5%) during HFNC. Approaches that streamline aerosol delivery are needed to provide safe and effective therapy to patients receiving aerosolized medications with this HFNC system.

2.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 560-574, 2023 05.
Article in English | MEDLINE | ID: mdl-36330693

ABSTRACT

In silico mechanistic modeling approaches have been designed by various stakeholders with the goal of supporting development and approval of generic orally inhaled drug products in the United States. This review summarizes the presentations and panel discussion that comprised a workshop session concentrated on the use of in silico models to predict various outcomes following orally inhaled drug product administration, including the status of such models and how model credibility may be effectively established.


Subject(s)
Drugs, Generic , Research Report , Humans , Therapeutic Equivalency , Administration, Inhalation , Computer Simulation
3.
Pharm Res ; 39(12): 3317-3330, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36253630

ABSTRACT

PURPOSE: The objective of this study was to incorporate a passive cyclic loading strategy into the infant air-jet dry powder inhaler (DPI) in a manner that provides high efficiency aerosol lung delivery and is insensitive to powder mass loadings and the presence of downstream pulmonary mechanics. METHODS: Four unique air-jet DPIs were initially compared and the best performing passive design (PD) was selected for sensitivity analyses. A single preterm in vitro nose-throat (NT) model, air source, and nasal interface were utilized throughout. While the majority of analyses were evaluated with a model spray-dried excipient enhanced growth (EEG) formulation, performance of a Surfactant-EEG formulation was also explored for the lead DPI design. RESULTS: Two devices, PD-2 and PD-3, evaluated in the preterm model achieved an estimated lung delivery efficiency of 60% with the model EEG formulation, and were not sensitive to the loaded dose (10-30 mg of powder). The PD-3 device was also unaffected by the presence of downstream pulmonary mechanics (infant lung model) and had only a minor sensitivity to tripling the volume of the powder reservoir. When using the Surfactant-EEG formulation, increasing the actuation flow rate from 1.7 to 4.0 L/min improved lung delivery by nearly 10%. CONCLUSIONS: The infant air-jet DPI platform was successfully modified with a passive cyclic loading strategy and capable of providing an estimated > 60% lung delivery efficiency of a model spray-dried formulation with negligible sensitivity to powder mass loading in the range of 10-30 mg and could be scaled to deliver much higher doses.


Subject(s)
Dry Powder Inhalers , Excipients , Infant, Newborn , Humans , Infant , Powders , Equipment Design , Particle Size , Administration, Inhalation , Aerosols , Surface-Active Agents
4.
J Aerosol Sci ; 1592022 Jan.
Article in English | MEDLINE | ID: mdl-34658403

ABSTRACT

A critical factor affecting the accuracy of Computational Fluid Dynamic (CFD) simulations and the time required to conduct them is construction of the computational mesh. This study aimed to evaluate the relatively new polyhedral mesh style for simulating aerosol deposition in the upper conducting airways compared with established meshing techniques and experimental data. Hexahedral and polyhedral mesh solutions were compared in two benchmark geometries: 1) a 90°-bend with flow characteristics similar to the extrathoracic airways of an adolescent child, and 2) a double bifurcation representing bifurcations B3-B5 in an adult. Both 4-block and 5-block hexahedral meshes were used in the 90°-bend to capture the potential of fully-structured hexahedral meshes. In the 90°-bend, polyhedral elements matched polydisperse in vitro deposition data with 20% relative error (RE; averaged across the particle sizes considered), which is an improvement on the accuracy of the 4-block hexahedral mesh (35% RE) and is similar to the accuracy of the 5-block hexahedral mesh (19% RE). In the double bifurcation, deposition fraction relative differences evaluated between polyhedral and hexahedral meshes ranged from 0.3% to 28.6% for the different particle sizes assessed, which is an order of magnitude improvement compared with previous studies that considered hexahedral vs. hybrid tetrahedral-prism meshes for the same flow field. Solution convergence time with polyhedral elements was found to be 50% to 140% higher than with hexahedral meshes of comparable size. While application dependent, the increase in simulation time observed with polyhedral meshes will likely be outweighed by the ease and convenience of polyhedral mesh construction. It was concluded that the polyhedral mesh style, with sufficient resolution especially near the walls, is an excellent alternative to the highly regarded hexahedral mesh style for predicting upper airway aerosol transport and deposition and provides a powerful new tool in the assessment of respiratory aerosol dosimetry.

5.
Pharm Res ; 38(9): 1615-1632, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34462876

ABSTRACT

PURPOSE: In order to improve the delivery of dry powder aerosol formulations to the lungs of infants, this study implemented an infant air-jet platform and explored the effects of different air sources, flow rates, and pulmonary mechanics on aerosolization performance and aerosol delivery through a preterm nose-throat (NT) in vitro model. METHODS: The infant air-jet platform was actuated with a positive-pressure air source that delivered the aerosol and provided a full inhalation breath. Three different air sources were developed to provide highly controllable positive-pressure air actuations (using actuation volumes of ~10 mL for the preterm model). While providing different flow waveform shapes, the three air sources were calibrated to produce the same flow rate magnitude (Q90: 90th percentile of flow rate). Multiple air-jet DPI designs were coupled with the air sources and evaluated with a model spray-dried excipient enhanced growth formulation. RESULTS: Compared to other designs, the D1-Single air-jet DPI provided improved performance with low variability across all three air sources. With the tested D1-Single air-jet and Timer air source, reducing the flow rate from 4 to 1.7 L/min marginally decreased the aerosol size and significantly increased the lung delivery efficiency above 50% of the loaded dose. These results were not impacted by the presence of downstream pulmonary mechanics (resistance and compliance model). CONCLUSIONS: The selected design was capable of providing an estimated >50% lung delivery efficiency of a model spray-dried formulation and was not influenced by the air source, thereby enabling greater flexibility for platform deployment in different environments.


Subject(s)
Chemistry, Pharmaceutical/methods , Dry Powder Inhalers/methods , Powders/chemistry , Administration, Inhalation , Aerosols/chemistry , Equipment Design/methods , Excipients/chemistry , Humans , Infant , Lung/metabolism , Nose/drug effects , Particle Size
6.
J Aerosol Sci ; 1532021 Mar.
Article in English | MEDLINE | ID: mdl-33716317

ABSTRACT

While dry powder aerosol formulations offer a number of advantages, their use in children is often limited due to poor lung delivery efficiency and difficulties with consistent dry powder inhaler (DPI) usage. Both of these challenges can be attributed to the typical use of adult devices in pediatric subjects and a lack of pediatric-specific DPI development. In contrast, a number of technologies have recently been developed or progressed that can substantially improve the efficiency and reproducibility of DPI use in children including: (i) nose-to-lung administration with small particles, (ii) active positive-pressure devices, (iii) structures to reduce turbulence and jet momentum, and (iv) highly dispersible excipient enhanced growth particle formulations. In this study, these technologies and their recent development are first reviewed in depth. A case study is then considered in which these technologies are simultaneously applied in order to enable the nose-to-lung administration of dry powder aerosol to children with cystic fibrosis (CF). Using a combination of computational fluid dynamics (CFD) analysis and realistic in vitro experiments, device performance, aerosol size increases and lung delivery efficiency are considered for pediatric-CF subjects in the age ranges of 2-3, 5-6 and 9-10 years old. Results indicate that a new 3D rod array structure significantly improves performance of a nasal cannula reducing interface loss by a factor of 1.5-fold and produces a device emitted mass median aerodynamic diameter (MMAD) of 1.67 µm. For all ages considered, approximately 70% of the loaded dose reaches the lower lung beyond the lobar bronchi. Moreover, significant and rapid size increase of the aerosol is observed beyond the larynx and illustrates the potential for targeting lower airway deposition. In conclusion, concurrent CFD and realistic in vitro analysis indicates that a combination of multiple new technologies can be implemented to overcome obstacles that currently limit the use of DPIs in children as young as two years of age.

7.
J Aerosol Med Pulm Drug Deliv ; 34(1): 57-70, 2021 02.
Article in English | MEDLINE | ID: mdl-32758026

ABSTRACT

Background: Positive-pressure dry powder inhalers (DPIs) have recently been developed that in combination with highly dispersible spray-dried powder formulations can achieve high efficiency aerosolization with low actuation air-volumes (AAVs). The objective of this study was to initially develop the positive-pressure air-jet DPI platform for high efficiency aerosol delivery to newborn infants by using the nose-to-lung route. Methods: Aerosolization performance metrics of six air-jet DPIs were first assessed at AAVs that were consistent with full-term (30 mL) and preterm (10 mL) neonates. Designs of the air-jet DPIs varied based on geometry of the inlet and outlet flow passages and shape of the aerosolization chamber. Aerosolization metrics evaluated at the device outlet were emitted dose (ED) and mass median aerodynamic diameter (MMAD). Designs with the best aerosolization performance were connected to a smoothly expanding nasal interface and full-term infant (3550 g) nose-throat (NT) model with tracheal filter. Results: The three best performing devices had characteristics of a cylindrical and horizontal aerosolization chamber with a flush or protruding outlet orifice. Including multiple air inlets resulted in meeting the aerosolization targets of >80% ED (based on loaded dose) and MMAD <1.8 µm. Reducing the AAV by a factor of threefold from 30 to 10 mL had little effect on aerosol formation. The three leading devices all delivered ∼50% of the loaded dose through a full-term NT in vitro model by using an AAV of 30 mL. Conclusion: With careful selection of design attributes, the air-jet DPI platform is capable of high-efficiency aerosolization of a 10 mg powder mass by using AAVs that are consistent with infant inhalation. The associated infant air-jet DPI system, which forms a seal at the nostril(s) and delivers both the aerosol and a complete inhalation, is capable of rapid and efficient aerosol administration to infant lungs, based on initial testing in a full-term in vitro NT model.


Subject(s)
Dry Powder Inhalers , Administration, Inhalation , Aerosols , Equipment Design , Humans , Infant , Infant, Newborn , Particle Size , Powders
8.
Pharm Res ; 37(10): 199, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32968848

ABSTRACT

PURPOSE: The objective of this study was to optimize nose-to-lung aerosol delivery in an adult upper airway model using computational fluid dynamics (CFD) simulations in order to guide subsequent human subject aerosol delivery experiments. METHODS: A CFD model was developed that included a new high-flow nasal cannula (HFNC) and pharmaceutical aerosol delivery unit, nasal cannula interface, and adult upper airway geometry. Aerosol deposition predictions in the system were validated with existing and new experimental results. The validated CFD model was then used to explore aerosol delivery parameters related to synchronizing aerosol generation with inhalation and inhalation flow rate. RESULTS: The low volume of the new HFNC unit minimized aerosol transit time (0.2 s) and aerosol bolus spread (0.1 s) enabling effective synchronization of aerosol generation with inhalation. For aerosol delivery correctly synchronized with inhalation, a small particle excipient-enhanced growth delivery strategy reduced nasal cannula and nasal depositional losses each by an order of magnitude and enabled ~80% of the nebulized dose to reach the lungs. Surprisingly, nasal deposition was not sensitive to inhalation flow rate due to use of a nasal cannula interface with co-flow inhaled air and the small initial particle size. CONCLUSIONS: The combination of correct aerosol synchronization and small particle size enabled high efficiency nose-to-lung aerosol delivery in adults, which was not sensitive to inhalation flow rate.


Subject(s)
Administration, Intranasal/instrumentation , Administration, Intranasal/methods , Aerosols/administration & dosage , Computer Simulation , Hydrodynamics , Administration, Inhalation , Adult , Bronchodilator Agents/administration & dosage , Drug Delivery Systems , Equipment Design , Humans , Lung , Nasal Sprays , Nose , Particle Size
9.
Pharm Res ; 37(9): 177, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32862295

ABSTRACT

PURPOSE: Available dry powder inhalers (DPIs) have very poor lung delivery efficiencies in children. The objective of this study was to advance and experimentally test a positive-pressure air-jet DPI for children based on the use of a vertical aerosolization chamber and new patient interfaces that contain a three-dimensional (3D) rod array structure. METHODS: Aerosolization performance of different air-jet DPI designs was first evaluated based on a 10 mg powder fill mass of a spray-dried excipient enhanced growth (EEG) formulation. Devices were actuated with positive pressure using flow rate (10-20 L/min) and inhaled volume (750 ml) conditions consistent with a 5-year-old child. Devices with best performance were connected to different mouthpiece designs to determine the effect on aerosolization and tested for aerosol penetration through a realistic pediatric in vitro mouth-throat model. RESULTS: Use of the new vertical aerosolization chamber resulted in high quality aerosol formation. Inclusion of a 3D rod array structure in the mouthpiece further reduced aerosol size by approximately 20% compared to conditions without a rod array, and effectively dissipated the turbulent jet leaving the device. Best case device and mouthpiece combinations produced < 2% mouth-throat depositional loss and > 70% lung delivery efficiency based on loaded dose. CONCLUSIONS: In conclusion, use of a 3D rod array in the MP of a positive-pressure air-jet DPI was found to reduce aerosol size by 20%, not significantly increase MP depositional loss, reduce mouth-throat deposition by 6.4-fold and enable lung delivery efficiency as high as 73.4% of loaded dose based on pediatric test conditions.


Subject(s)
Bronchodilator Agents/administration & dosage , Dry Powder Inhalers/instrumentation , Lung/drug effects , Administration, Inhalation , Aerosols , Bronchodilator Agents/pharmacokinetics , Child , Child, Preschool , Drug Delivery Systems/methods , Equipment Design , Humans , Hydrodynamics , Mouth , Particle Size , Powders , Tissue Distribution
10.
Nanomedicine ; 29: 102262, 2020 10.
Article in English | MEDLINE | ID: mdl-32623017

ABSTRACT

Tenacious sputum poses a critical diffusion barrier for aerosol antibiotics used to treat cystic fibrosis (CF) lung infection. We conducted a proof-of-concept study using dense poly(ethylene glycol) coated polystyrene nanoparticles (PS-PEG NPs) as model muco-inert particles (MIPs) formulated as a powder using an excipient enhanced growth (EEG) strategy, aiming to minimize extrathoracic airway loss, maximize deposition in the airway and further overcome the sputum barrier in the CF lungs. The EEG aerosol formulation containing PS-PEG MIPs was prepared by spray drying and produced discrete spherical particles with geometric diameter of approximately 2 µm; and >80% of the powder dose was delivered from a new small-animal dry powder inhaler (DPI). The MIPs released from the EEG aerosol had human airway mucus and CF sputum diffusion properties comparable to the suspension formulation. These properties make this formulation a promising pulmonary drug delivery system for CF lung infections.


Subject(s)
Cystic Fibrosis/drug therapy , Drug Delivery Systems , Lung Diseases/drug therapy , Lung/drug effects , Nanoparticles/chemistry , Administration, Inhalation , Cystic Fibrosis/pathology , Dry Powder Inhalers/methods , Excipients/chemistry , Humans , Lung/growth & development , Lung Diseases/pathology , Mucus/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polystyrenes/chemistry , Polystyrenes/pharmacology
11.
J Aerosol Med Pulm Drug Deliv ; 33(6): 314-322, 2020 12.
Article in English | MEDLINE | ID: mdl-32453638

ABSTRACT

Background: In neonatal respiratory distress syndrome, breathing support and surfactant therapy are commonly used to enable the alveoli to expand. Surfactants are typically delivered through liquid instillation. However, liquid instillation does not specifically target the small airways. We have developed an excipient enhanced growth (EEG) powder aerosol formulation using Survanta®. Methods: EEG Survanta powder aerosol was delivered using a novel dry powder inhaler via tracheal insufflation to surfactant depleted rats at nominal doses of 3, 5, 10, and 20 mg of powder containing 0.61, 0.97, 1.73, and 3.46 mg of phospholipids (PL), whereas liquid Survanta was delivered via syringe instillation at doses of 2 and 4 mL/kg containing 18.6 and 34 mg of PL. Ventilation mechanics were measured before and after depletion, and after treatment. We hypothesized that EEG Survanta powder aerosol would improve lung mechanics compared with instilled liquid Survanta in surfactant depleted rats. Results and Conclusion: EEG Survanta powder aerosol at a dose of 0.61 mg PL significantly improved lung compliance and elastance compared with the liquid Survanta at a dose of 18.6 mg, which represents improved primary efficacy of the aerosol at a 30-fold lower dose of PL. There was no significant difference in white blood cell count of the lavage from the EEG Survanta group compared with liquid Survanta. These results provide an in vivo proof-of-concept for EEG Survanta powder aerosol as a promising method of surfactant replacement therapy.


Subject(s)
Lung Injury/drug therapy , Pulmonary Surfactants/administration & dosage , Aerosols , Animals , Disease Models, Animal , Excipients , Particle Size , Powders , Rats , Rats, Sprague-Dawley
12.
Pharm Res ; 37(6): 101, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32440940

ABSTRACT

PURPOSE: The purpose of this study was to develop a new computational fluid dynamics (CFD)-based model of the complex transport and droplet drying kinetics within a laboratory-scale spray dryer, and relate CFD-predicted drying parameters to powder aerosolization metrics from a reference dry powder inhaler (DPI). METHODS: A CFD model of the Buchi Nano Spray Dryer B-90 was developed that captured spray dryer conditions from a previous experimental study producing excipient enhanced growth powders with L-leucine as a dispersion enhancer. The CFD model accounted for two-way heat and mass transfer coupling between the phases and turbulent flow created by acoustic streaming from the mesh nebulizer. CFD-based drying parameters were averaged across all droplets in each spray dryer case and included droplet time-averaged drying rate (κavg), maximum instantaneous drying rate (κmax) and precipitation window. RESULTS: CFD results highlighted a chaotic drying environment in which time-averaged droplet drying rates (κavg) for each spray dryer case had high variability with coefficients of variation in the range of 60-70%. Maximum instantaneous droplet drying rates (κmax) were discovered that were two orders of magnitude above time-averaged drying rates. Comparing CFD-predicted drying parameters with experimentally determined mass median aerodynamic diameters (MMAD) and emitted doses (ED) from a reference DPI produced strong linear correlations with coefficients of determination as high as R2 = 0.98. CONCLUSIONS: For the spray dryer system and conditions considered, reducing the CFD-predicted maximum drying rate experienced by droplets improved the aerosolization performance (both MMAD and ED) when the powders were aerosolized with a reference DPI.


Subject(s)
Drug Compounding/methods , Excipients/chemistry , Models, Chemical , Spray Drying , Administration, Inhalation , Aerosols , Chemistry, Pharmaceutical , Computer Simulation , Dry Powder Inhalers , Hydrodynamics , Particle Size
13.
Ann Biomed Eng ; 48(2): 624-633, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31598892

ABSTRACT

Despite the increased use of high flow nasal cannula therapy, little has been done to predict airway pressures for a full breath cycle. A 3-month-old infant in vitro model was developed, which included the entire upper airway and the first three bifurcations of the lungs. A breathing simulator was used to create a realistic breath pattern, and high flow was provided using a Vapotherm unit. Four cannulas of varying sizes were used to assess the effects of the inner diameter and nasal occlusion of the cannulas on airway pressures. At 8 L min-1, end expiratory pressures of 0.821-1.306 cm H2O and 0.828-1.133 cm H2O were produced in the nasopharynx and trachea, respectively. Correlations were developed to predict full breath cycle airway pressures, based on the gas flow rate delivered, cannula dimensions, as well as the breathing flow rate, for the nasopharynx and trachea. Pearson correlation coefficients for the nasopharynx and trachea correlations were 0.991 and 0.992, respectively. The developed correlations could be used to determine the flow rate necessary for a cannula to produce pressures similar to CPAP settings. The proposed correlations accurately predict the regional airway pressure up to and including 7 cm H2O of support for the entire breath cycle.


Subject(s)
Cannula , Continuous Positive Airway Pressure , Lung/physiopathology , Models, Biological , Nose , Female , Humans , Infant , Lung/pathology , Male
14.
Expert Opin Drug Deliv ; 16(1): 7-26, 2019 01.
Article in English | MEDLINE | ID: mdl-30463458

ABSTRACT

INTRODUCTION: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. AREAS COVERED: This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. EXPERT OPINION: Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.


Subject(s)
Drug Delivery Systems/methods , Hydrodynamics , Models, Biological , Administration, Inhalation , Aerosols/administration & dosage , Asthma/drug therapy , Computer Simulation , Drug Compounding , Humans , Nebulizers and Vaporizers , Therapeutic Equivalency
15.
J Aerosol Sci ; 119: 31-50, 2018 May.
Article in English | MEDLINE | ID: mdl-30349146

ABSTRACT

The development of a CFD model, from initial geometry to experimentally validated result with engineering insight, can be a time-consuming process that often requires several iterations of meshing and solver set-up. Applying a set of guidelines in the early stages can help to streamline the process and improve consistency between different models. The objective of this study was to determine both mesh and CFD solution parameters that enable the accurate simulation of microparticle deposition under flow conditions consistent with the upper respiratory airways including turbulent flow. A 90° bend geometry was used as a characteristic model that occurs throughout the airways and for which high-quality experimental aerosol deposition data is available in the transitional and turbulent flow regimes. Four meshes with varying degrees of near-wall resolution were compared, and key solver settings were applied to determine the parameters that minimize sensitivity to the near-wall (NW) mesh. The Low Reynolds number (LRN) k-ω model was used to resolve the turbulence field, which is a numerically efficient two-equation turbulence model, but has recently been considered overly simplistic. Some recent studies have used more complex turbulence models, such as Large Eddy Simulation (LES), to overcome the perceived weaknesses of two-equation models. Therefore, the secondary objective was to determine whether the more computationally efficient LRN k-ω model was capable of providing deposition results that were comparable to LES. Results show how NW mesh sensitivity is reduced through application of the Green-Gauss Node-based gradient discretization scheme and physically realistic near-wall corrections. Using the newly recommended meshing parameters and solution guidelines gives an excellent match to experimental data. Furthermore, deposition data from the LRN k-ω model compares favorably with LES results for the same characteristic geometry. In summary, this study provides a set of meshing and solution guidelines for simulating aerosol deposition in transitional and turbulent flows found in the upper respiratory airways using the numerically efficient LRN k-ω approach.

16.
Pharm Res ; 35(10): 194, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30132207

ABSTRACT

PURPOSE: To demonstrate efficient aerosol delivery through an in vitro nasal model using a dry powder inhaler (DPI) requiring low actuation air volumes (LV) applied during low-flow nasal cannula (LFNC) therapy. METHODS: A previously developed LV-DPI was connected to a LFNC system with 4 mm diameter tubing. System connections and the nasal cannula interface were replaced with streamlined components. To simulate nasal respiration, an in vitro nasal model was connected to a downstream lung simulator that produced either passive or deep nasal respiration. Performance of a commercial mesh nebulizer system was also considered. RESULTS: For the optimized system, steady state cannula emitted dose was 75% of the capsule loaded dose. With cyclic nasal breathing, delivery efficiency to the tracheal filter was 53-55% of the loaded dose, which was just under the design target of 60%. Compared with a commercially available mesh nebulizer, the optimal LV-DPI was 40-fold more efficient and 150 times faster in terms of delivering aerosol to the lungs. CONCLUSIONS: The optimized LV-DPI system is capable of high efficiency lung delivery of powder aerosols through a challenging nasal cannula interface.


Subject(s)
Dry Powder Inhalers/instrumentation , Nasal Sprays , Administration, Inhalation , Chemistry, Pharmaceutical , Equipment Design , Inhalation Spacers , Lung/anatomy & histology , Nose/anatomy & histology , Oxygen/chemistry , Particle Size , Powders/chemistry
17.
Med Eng Phys ; 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29941306

ABSTRACT

A complete-airway in vitro model would be very useful for toxicological dosimetry testing and for developing targeted inhaled medications in cases where conducting in vivo experiments are exceedingly difficult, as with infants. The objective of this study was to determine whether packed bed in vitro models, which contain spheres as the primary repeating unit, provide a realistic representation of aerosol deposition in the tracheobronchial region of infant lungs based on computational fluid dynamics (CFD) predictions. The packed bed (PB) CFD model contained an inlet consistent with airway bifurcation B3 (∼lobar bronchi) leading to a spherical array with voids between the spheres forming a divided flow pathway. The hydrodynamic diameter of the voids was approximately matched to the diameter of bifurcations in various lung regions. For comparison, a CFD stochastic individual pathway (SIP) geometry with realistic bifurcations extending from B4-B15 (terminal bronchioles) was selected as an anatomically accurate model. The CFD-SIP model predictions were benchmarked with existing algebraic correlations for aerosol deposition in the lungs and found to be reasonable. Unfortunately, the CFD-PB model did not provide a good representation of aerosol deposition in the tracheobronchial region of human lungs. Through careful selection of the PB sphere size and inlet conditions, total deposition in the CFD-PB model matched CFD-SIP deposition within 10% absolute error across a range of relevant aerosol sizes. However, regional deposition within the CFD-PB model was very different from the CFD-SIP case. Therefore, the PB approach cannot be recommended for determining spatial or temporal distribution of aerosol transport and impaction deposition through the lungs.

18.
Int J Pharm ; 546(1-2): 1-9, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29733972

ABSTRACT

Inline dry powder inhalers (DPIs) offer a potentially effective option to deliver high dose inhaled medications simultaneously with mechanical ventilation. The objective of this study was to develop an inline DPI that is actuated using a low volume of air (LV-DPI) to efficiently deliver pharmaceutical aerosols during low flow nasal cannula (LFNC) therapy. A characteristic feature of the new inline LV-DPIs was the use of hollow capillary tubes that both pierced the capsule and provided a pathway for inlet air and exiting aerosol. Aerosolization characteristics, LFNC depositional losses and emitted dose (ED) were determined using 10 mg powder masses of a small-particle excipient enhanced growth (EEG) formulation. While increasing the number of inlet capillaries from one to three did not improve performance, retracting the inlet and outlet capillaries did improve ED by over 30%. It was theorized that high quality performance requires both high turbulent energy to deaggregate the powder and high wall shear stresses to minimize capsule retention. Best case performance included a device ED of approximately 85% (of loaded dose) and device emitted mass median aerodynamic diameter of 1.77 µm. Maximum ED through the LFNC system and small diameter (4 mm) nasal cannula was approximately 65% of the loaded dose. Potential applications of this device include the delivery of high dose inhaled medications such as surfactants, antibiotics, mucolytics, and anti-inflammatories.


Subject(s)
Cannula , Dry Powder Inhalers/instrumentation , Inhalation Spacers , Administration, Inhalation , Aerosols , Albuterol , Equipment Design
19.
J Aerosol Med Pulm Drug Deliv ; 31(2): 103-108, 2018 04.
Article in English | MEDLINE | ID: mdl-28880765

ABSTRACT

BACKGROUND: Current in vitro approaches to assess lung deposition, dissolution, and cellular transport behavior of orally inhaled products (OIPs) have relied on compendial impactors to collect drug particles that are likely to deposit in the airway; however, the main drawback with this approach is that these impactors do not reflect the airway and may not necessarily represent drug deposition behavior in vivo. The aim of this article is to describe the development and method validation of a novel hybrid in vitro approach to assess drug deposition and permeation behavior in a more representative airway model. METHODS: The medium-sized Virginia Commonwealth University (VCU) mouth-throat (MT) and tracheal-bronchial (TB) realistic upper airway models were used in this study as representative models of the upper airway. The TB model was modified to accommodate two Snapwell® inserts above the first TB airway bifurcation region to collect deposited nebulized ciprofloxacin-hydrochloride (CIP-HCL) droplets as a model drug aerosol system. Permeation characteristics of deposited nebulized CIP-HCL droplets were assessed across different synthetic membranes using the Snapwell test system. RESULTS: The Snapwell test system demonstrated reproducible and discriminatory drug permeation profiles for already dissolved and nebulized CIP-HCL droplets through a range of synthetic permeable membranes under different test conditions. The rate and extent of drug permeation depended on the permeable membrane material used, presence of a stirrer in the receptor compartment, and, most importantly, the drug collection method. CONCLUSIONS: This novel hybrid in vitro approach, which incorporates a modified version of a realistic upper airway model, coupled with the Snapwell test system holds great potential to evaluate postairway deposition characteristics, such as drug permeation and particle dissolution behavior of OIPs. Future studies will expand this approach using a cell culture-based setup instead of synthetic membranes, within a humidified chamber, to assess airway epithelia transport behavior in a more representative manner.


Subject(s)
Aerosols , Ciprofloxacin/administration & dosage , Drug Delivery Systems , Models, Anatomic , Administration, Inhalation , Bronchi/metabolism , Ciprofloxacin/pharmacokinetics , Drug Liberation , Humans , Lung/metabolism , Reproducibility of Results , Tissue Distribution , Trachea/metabolism
20.
J Aerosol Med Pulm Drug Deliv ; 31(4): 255-265, 2018 08.
Article in English | MEDLINE | ID: mdl-29261454

ABSTRACT

BACKGROUND: Inline dry powder inhalers (DPIs) are actuated by an external air source and have distinct advantages for delivering aerosols to infants and children, and to individuals with compromised lung function or who require ventilator support. However, current inline DPIs either perform poorly, are difficult to operate, and/or require large volumes (∼1 L) of air. The objective of this study was to develop and characterize a new inline DPI for aerosolizing spray-dried formulations with powder masses of 10 mg and higher using a dispersion air volume of 10 mL per actuation that is easy to load (capsule-based) and operate. METHODS: Primary features of the new low air volume (LV) DPIs are fixed hollow capillaries that both pierce the capsule and provide a continuous flow path for air and aerosol passing through the device. Two different configurations were evaluated, which were a straight-through (ST) device, with the inlet and outlet capillaries on opposite ends of the capsule, and a single-sided (SS) device, with both the inlet and outlet capillaries on the same side of the capsule. The devices were operated with five actuations of a 10 mL air syringe using an albuterol sulfate (AS) excipient-enhanced growth (EEG) formulation. Device emptying and aerosol characteristics were evaluated for multiple device outlet configurations. RESULTS: Each device had specific advantages. The best case ST device produced the smallest aerosol [mean mass median aerodynamic diameter (MMAD) = 1.57 µm; fine particle fraction <5 µm (FPF<5µm) = 95.2%)] but the mean emitted dose (ED) was 61.9%. The best case SS device improved ED (84.8%), but produced a larger aerosol (MMAD = 2.13 µm; FPF<5µm = 89.3%) that was marginally higher than the initial deaggregation target. CONCLUSIONS: The new LV-DPIs produced an acceptable high-quality aerosol with only 10 mL of dispersion air per actuation and were easy to load and operate. This performance should enable application in high and low flow mechanical ventilation systems and high efficiency lung delivery to both infants and children.


Subject(s)
Dry Powder Inhalers , Equipment Design , Aerosols
SELECTION OF CITATIONS
SEARCH DETAIL
...