Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686236

ABSTRACT

Parkinson's disease (PD) pathology is characterized by the loss of dopaminergic neurons of the nigrostriatal system and accumulation of Lewy bodies (LB) and Lewy neurites (LN), inclusions mainly composed of alpha-synuclein (α-Syn) fibrils. Studies linking the occurrence of mutations and multiplications of the α-Syn gene (SNCA) to the onset of PD support that α-Syn deposition may play a causal role in the disease, in line with the hypothesis that disease progression may correlate with the spreading of LB pathology in the brain. Interestingly, LB accumulate posttranslationally modified forms of α-Syn, suggesting that α-Syn posttranslational modifications impinge on α-Syn aggregation and/or toxicity. Here, we aimed at investigating changes in α-Syn phosphorylation, nitration and acetylation in mice subjected to nigral stereotaxic injections of adeno-associated viral vectors inducing overexpression of human α-Syn (AAV-hα-Syn), that model genetic PD with SNCA multiplications. We detected a mild increase of serine (Ser) 129 phosphorylated α-Syn in the substantia nigra (SN) of AAV-hα-Syn-injected mice in spite of the previously described marked accumulation of this PTM in the striatum. Following AAV-hα-Syn injection, tyrosine (Tyr) 125/136 nitrated α-Syn accumulation in the absence of general 3-nitrotirosine (3NT) or nitrated-Tyr39 α-Syn changes and augmented protein acetylation abundantly overlapping with α-Syn immunopositivity were also detected.


Subject(s)
Parkinson Disease , Animals , Humans , Mice , alpha-Synuclein/genetics , Disease Models, Animal , Lewy Bodies , Parkinson Disease/genetics , Phosphorylation , Protein Processing, Post-Translational
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569662

ABSTRACT

Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson's disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein-protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD.


Subject(s)
Parkinson Disease , Tubulin , alpha-Synuclein , Animals , Humans , Mice , Lewy Bodies , Microtubules
3.
Front Mol Neurosci ; 16: 1197853, 2023.
Article in English | MEDLINE | ID: mdl-37305556

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.

4.
Biomolecules ; 13(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36979407

ABSTRACT

The heteromer composed of dopamine D1 and D3 receptors (D1R-D3R) has been defined as a structure able to trigger Erk1/2 and Akt signaling in a G protein-independent, beta-arrestin 1-dependent way that is physiologically expressed in the ventral striatum and is likely involved in the control of locomotor activity. Indeed, abnormal levels of D1R-D3R heteromer in the dorsal striatum have been correlated with the development of L-DOPA-induced dyskinesia (LID) in Parkinson's disease patients, a motor complication associated with striatal D1R signaling, thus requiring Gs protein and PKA activity to activate Erk1/2. Therefore, to clarify the role of the D1R/D3R heteromer in LID, we investigated the signaling pathway induced by the heteromer using transfected cells and primary mouse striatal neurons. Collectively, we found that in both the cell models, D1R/D3R heteromer-induced activation of Erk1/2 exclusively required the D1R molecular effectors, such as Gs protein and PKA, with the contribution of the phosphatase Shp-2 and beta-arrestins, indicating that heterodimerization with the D3R abolishes the specific D3R-mediated signaling but strongly allows D1R signals. Therefore, while in physiological conditions the D1R/D3R heteromer could represent a mechanism that strengthens the D1R activity, its pathological expression may contribute to the abnormal PKA-Shp-2-Erk1/2 pathway connected with LID.


Subject(s)
Dopamine , Levodopa , Animals , Mice , beta-Arrestin 1 , beta-Arrestins , GTP-Binding Proteins , Levodopa/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatases , Receptors, Dopamine D1 , Receptors, Dopamine D3
5.
Cells ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36497160

ABSTRACT

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.


Subject(s)
Dopaminergic Neurons , Synapsins , Animals , Humans , Mice , Brain-Derived Neurotrophic Factor/genetics , Dopamine , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Methylphenidate/therapeutic use , Mice, Knockout , Synapsins/genetics , Synapsins/metabolism , Zebrafish/metabolism
6.
Pharmaceutics ; 14(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36015221

ABSTRACT

Parkinson's disease (PD) is characterized by dopaminergic nigrostriatal neurons degeneration and Lewy body pathology, mainly composed of α-synuclein (αSyn) fibrillary aggregates. We recently described that the neuronal phosphoprotein Synapsin III (Syn III) participates in αSyn pathology in PD brains and is a permissive factor for αSyn aggregation. Moreover, we reported that the gene silencing of Syn III in a human αSyn transgenic (tg) mouse model of PD at a pathological stage, manifesting marked insoluble αSyn deposits and dopaminergic striatal synaptic dysfunction, could reduce αSyn aggregates, restore synaptic functions and motor activities and exert neuroprotective effects. Interestingly, we also described that the monoamine reuptake inhibitor methylphenidate (MPH) can recover the motor activity of human αSyn tg mice through a dopamine (DA) transporter-independent mechanism, which relies on the re-establishment of the functional interaction between Syn III and α-helical αSyn. These findings support that the pathological αSyn/Syn III interaction may constitute a therapeutic target for PD. Here, we studied MPH and some of its analogues as modulators of the pathological αSyn/Syn III interaction. We identified 4-methyl derivative I-threo as a lead candidate modulating αSyn/Syn III interaction and having the ability to reduce αSyn aggregation in vitro and to restore the motility of αSyn tg mice in vivo more efficiently than MPH. Our results support that MPH derivatives may represent a novel class of αSyn clearing agents for PD therapy.

7.
Biomedicines ; 10(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009486

ABSTRACT

In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.

9.
J Neuroinflammation ; 19(1): 50, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172843

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating neurons are surrounded by activated microglia with increased secretion of interleukin-1ß (IL-1ß), driven largely by the NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopaminergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in other in vivo parkinsonism models. METHODS: Biochemical techniques including quantification of IL-1ß secretion and confocal microscopy were employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors through which these catecholamines were predicted to act were assessed with agonists in both species. RESULTS: We show in primary human microglia that dopamine, L-DOPA, and high extracellular K+, but not norepinephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1ß secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) signaling. We also show that aged mice transgenic for human C-terminally truncated (1-120) α-syn (SYN120 tg mice) display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism. CONCLUSIONS: Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflammasome in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to disease pathology.


Subject(s)
Inflammasomes , Parkinson Disease , Animals , Dopamine/metabolism , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/pathology
10.
Mol Ther ; 30(4): 1465-1483, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35038583

ABSTRACT

Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Dopamine , Dopaminergic Neurons/metabolism , Gene Silencing , Mice , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/therapy , Phenotype , Substantia Nigra/metabolism , Synapsins/genetics , Synapsins/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
11.
Neurosci Biobehav Rev ; 130: 33-60, 2021 11.
Article in English | MEDLINE | ID: mdl-34407457

ABSTRACT

Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.


Subject(s)
Mental Disorders , Synapsins , Humans , Neurons , Synaptic Transmission , Synaptic Vesicles
12.
Front Immunol ; 12: 611761, 2021.
Article in English | MEDLINE | ID: mdl-33679750

ABSTRACT

Misfolded proteins, inflammation, and vascular alterations are common pathological hallmarks of neurodegenerative diseases. Alpha-synuclein is a small synaptic protein that was identified as a major component of Lewy bodies and Lewy neurites in the brain of patients affected by Parkinson's disease (PD), Lewy body dementia (LBD), and other synucleinopathies. It is mainly involved in the regulation of synaptic vesicle trafficking but can also control mitochondrial/endoplasmic reticulum (ER) homeostasis, lysosome/phagosome function, and cytoskeleton organization. Recent evidence supports that the pathological forms of α-synuclein can also reduce the release of vasoactive and inflammatory mediators from endothelial cells (ECs) and modulates the expression of tight junction (TJ) proteins important for maintaining the blood-brain barrier (BBB). This hints that α-synuclein deposition can affect BBB integrity. Border associated macrophages (BAMs) are brain resident macrophages found in association with the vasculature (PVMs), meninges (MAMs), and choroid plexus (CPMs). Recent findings indicate that these cells play distinct roles in stroke and neurodegenerative disorders. Although many studies have addressed how α-synuclein may modulate microglia, its effect on BAMs has been scarcely investigated. This review aims at summarizing the main findings supporting how α-synuclein can affect ECs and/or BAMs function as well as their interplay and effect on other cells in the brain perivascular environment in physiological and pathological conditions. Gaps of knowledge and new perspectives on how this protein can contribute to neurodegeneration by inducing BBB homeostatic changes in different neurological conditions are highlighted.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelial Cells/metabolism , alpha-Synuclein/metabolism , Animals , Biomarkers , Brain/pathology , Cell Communication , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Susceptibility , Gene Expression Regulation , Humans , Microglia/immunology , Microglia/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , alpha-Synuclein/genetics
13.
Glia ; 69(3): 681-696, 2021 03.
Article in English | MEDLINE | ID: mdl-33045109

ABSTRACT

The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Astrocytes , Clusterin/genetics , Humans , Lewy Bodies , Mice , alpha-Synuclein/genetics
14.
ChemMedChem ; 15(14): 1330-1337, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32452650

ABSTRACT

We previously described synapsin III (Syn III) as a synaptic phosphoprotein that controls dopamine release in cooperation with α-synuclein (aSyn). Moreover, we found that in Parkinson's disease (PD), Syn III also participates in aSyn aggregation and toxicity. Our recent observations point to threo-methylphenidate (MPH), a monoamine re-uptake inhibitor that efficiently counteracts the freezing-gait characteristic of advanced PD, as a ligand for Syn III. We have designed and synthesised two different fluorescently labelled MPH derivatives, one with Rhodamine Red (RHOD) and one with 5-carboxytetramethylrhodamine (TAMRA), to be used for assessing MPH binding to Syn III by FRET. TAMRA-MPH exhibited the ideal characteristics to be used as a FRET acceptor, as it was able to enter into the SK-N-SH cells and could interact specifically with human green fluorescent protein (GFP)-tagged Syn III but not with GFP alone. Moreover, the uptake of TAMRA-MPH and co-localization with Syn III was also observed in primary mesencephalic neurons. These findings support that MPH is a Syn III ligand and that TAMRA-conjugated drug molecules might be valuable tools to study drug-ligand interactions by FRET or to detect Syn III in cytological and histological samples.


Subject(s)
Drug Design , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Methylphenidate/chemistry , Synapsins/antagonists & inhibitors , Animals , Binding Sites/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Humans , Ligands , Methylphenidate/chemical synthesis , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship , Synapsins/analysis , Synapsins/metabolism
15.
Front Aging Neurosci ; 12: 68, 2020.
Article in English | MEDLINE | ID: mdl-32265684

ABSTRACT

The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.

16.
Neurobiol Dis ; 138: 104789, 2020 05.
Article in English | MEDLINE | ID: mdl-32032728

ABSTRACT

Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.


Subject(s)
Methylphenidate/metabolism , Synapsins/metabolism , alpha-Synuclein/metabolism , Animals , Cocaine/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Gait Disorders, Neurologic/metabolism , Lewy Bodies/metabolism , Methylphenidate/pharmacology , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Synucleinopathies
18.
IUBMB Life ; 72(4): 590-600, 2020 04.
Article in English | MEDLINE | ID: mdl-31693290

ABSTRACT

Synucleinopathies are neurodegenerative diseases characterized by the accumulation of either neuronal/axonal or glial insoluble proteinaceous aggregates mainly composed of α-synuclein (α-syn). Among them, the most common disorders are Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and some forms of familial parkinsonism. Both α-syn fibrils and oligomers have been found to exert toxic effects on neurons or oligodendroglial cells, can activate neuroinflammatory responses, and mediate the spreading of α-syn pathology. This poses the question of which is the most toxic α-syn species. What is worst, α-syn appears as a very peculiar protein, exerting multiple physiological functions in neurons, especially at synapses, but without acquiring a stable tertiary structure. Its conformation is particularly plastic, and the protein can exist in a natively unfolded state (mainly in solution), partially α-helical folded state (when it interacts with biological membranes), or oligomeric state (tetramers or dimers with debated functional profile). The extent of α-syn expression impinges on the resilience of neuronal cells, as multiplications of its gene locus, or overexpression, can cause neurodegeneration and onset of motor phenotype. For these reasons, one of the main challenges in the field of synucleinopathies, which still nowadays can only be managed by symptomatic therapies, has been the development of strategies aimed at reducing α-syn levels, oligomer formation, fibrillation, or cell-to-cell transmission. This review resumes the therapeutic approaches that have been proposed or are under development to counteract α-syn pathology by direct targeting of this protein and discuss their pros and cons in relation to the current state-of-the-art α-syn biology.


Subject(s)
Molecular Targeted Therapy/methods , alpha-Synuclein/physiology , Animals , Genetic Therapy/methods , Humans , Immunotherapy/methods , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Multiple System Atrophy/therapy , Parkinson Disease/therapy , Synapses/physiology , alpha-Synuclein/genetics
19.
Oxid Med Cell Longev ; 2019: 4246350, 2019.
Article in English | MEDLINE | ID: mdl-31871549

ABSTRACT

Dysregulations of mitochondria with alterations in trafficking and morphology of these organelles have been related to Parkinson's disease (PD), a neurodegenerative disorder characterized by brain accumulation of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-syn) fibrils. Experimental evidence supports that α-syn pathological aggregation can negatively impinge on mitochondrial functions suggesting that this protein may be crucially involved in the control of mitochondrial homeostasis. The aim of this study was to assay this hypothesis by analyzing mitochondrial function and morphology in primary cortical neurons from C57BL/6JOlaHsd α-syn null and C57BL/6J wild-type (wt) mice. Primary cortical neurons from mice lacking α-syn showed decreased respiration capacity measured with a Seahorse XFe24 Extracellular Flux Analyzer. In addition, morphological Airyscan superresolution microscopy showed the presence of fragmented mitochondria while real-time PCR and western blot confirmed altered expression of proteins involved in mitochondrial shape modifications in the primary cortical neurons of α-syn null mice. Transmission electron microscopy (TEM) studies showed that α-syn null neurons exhibited impaired mitochondria-endoplasmic reticulum (ER) physical interaction. Specifically, we identified a decreased number of mitochondria-ER contacts (MERCs) paralleled by a significant increase in ER-mitochondria distance (i.e., MERC length). These findings support that α-syn physiologically preserves mitochondrial functions and homeostasis. Studying α-syn/mitochondria interplay in health and disease is thus pivotal for understanding their involvement in PD and other LB disorders.


Subject(s)
Neurons/metabolism , alpha-Synuclein/metabolism , Animals , Blotting, Western , Cells, Cultured , Lewy Bodies/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondrial Dynamics , Neurons/cytology , alpha-Synuclein/genetics
20.
Transl Neurodegener ; 8: 16, 2019.
Article in English | MEDLINE | ID: mdl-31139367

ABSTRACT

BACKGROUND: Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic nigrostriatal neuron loss and brain accumulation of Lewy bodies, protein aggregates mainly composed of α-synuclein. We reported that mice deficient for NF-κB/c-Rel (c-rel-/-) develop a late-onset parkinsonism. At 18 months of age, c-rel-/- mice showed nigrostriatal degeneration and accumulation of α-synuclein aggregates associated with a motor impairment responsive to L-DOPA administration. Being c-Rel protein a transcriptional regulator for mitochondrial anti-oxidant and antiapoptotic factors, it has been inferred that its deficiency may affect the resilience of "energy demanding" nigral dopaminergic neurons to the aging process. PD patients manifest a prodromal syndrome that includes olfactory and gastrointestinal dysfunctions years before the frank degeneration of nigrostriatal neurons and appearance of motor symptoms. According to the Braak staging, the onset of non-motor and motor symptoms relates to progressive ascendant diffusion of α-synuclein pathology in the brain. The aim of this study was to identify whether c-rel-/- deficiency is associated with the onset of premotor signs of PD and spatio-temporal progression of cerebral α-synuclein deposition. METHODS: Intestinal and olfactory functions, intestine and brain α-synuclein deposition as well as striatal alterations, were assessed in c-rel-/- and control mice from 2 to 18 months of age. RESULTS: From 2 months of age, c-rel-/- mice displayed intestinal constipation and increasing olfactory impairment. At 2 months, c-rel-/- mice exhibited a mild α-synuclein accumulation in the distal colon. Moreover, they developed an age-dependent deposition of fibrillary α-synuclein that, starting at 5 months from the olfactory bulbs, dorsal motor nucleus of vagus and locus coeruleus, reached the substantia nigra at 12 months. At this age, the α-synuclein pathology associated with a drop of dopamine transporter in the striatum that anticipated by 6 months the axonal degeneration. From 12 months onwards oxidative/nitrosative stress developed in the striatum in parallel with altered expression of mitochondrial homeostasis regulators in the substantia nigra. CONCLUSIONS: In c-rel-/- mice, reproducing a parkinsonian progressive pathology with non-motor and motor symptoms, a Braak-like pattern of brain ascending α-synuclein deposition occurs. The peculiar phenotype of c-rel-/- mice envisages a potential contribution of c-Rel dysregulation to the pathogenesis of PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...