Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Clin Exp Pathol ; 16(4): 76-85, 2023.
Article in English | MEDLINE | ID: mdl-37168512

ABSTRACT

OBJECTIVE: Detection of gene rearrangements in MYC (a family of regulator genes and proto-oncogenes) and human B-cell lymphoma 6 (BCL6) using fluorescence in situ hybridization (FISH) are important in the evaluation of lymphomas, in particular diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma. Our current clinical MYC and BCL6 FISH workflow involves an overnight hybridization of probes with digital analysis using the GenASIs Scan and Analysis instrument (Applied Spectral Imaging). In order to improve assay turnaround time SureFISH probes were validated to reduce the hybridization time from 16 hours down to 1.5 hours. METHODS: Validation was a four-phase process involving initial development of the assays by testing new probes in a manual protocol, and cytogenetic studies to confirm the probe specificity, sensitivity, and localization. In the next phase, the assays were validated as a manual assay. The third phase involved development of the digital FISH assays by testing and optimizing the GenASIs Scan and Analysis instrument. In the final phase, the digital FISH assays were validated. RESULTS: Cytogenetic studies confirmed 100% probe sensitivity/specificity, and localization patterns. Negative reference range cutoffs calculated from 20 normal lymph nodes using the inverse of the beta cumulative probability density function (Excel BETAINV calculation) were 11% inclusive for both manual and digital MYC and BCL6 assays. There was 100% concordance between the manual and digital methods. The shortened hybridization time decreased the overall workflow time by 14.5 hours. CONCLUSIONS: This study validates the use of the SureFISH MYC and BCL6 probes on formalin fixed paraffin embedded (FFPE) tissue sections using a hybridization time of 1.5 hours that shortened the overall workflow by 14.5 hours. The process described also provides a standardized framework for validating digital FISH assays in the future.

2.
Mol Syndromol ; 11(3): 125-129, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32903844

ABSTRACT

Pallister-Killian syndrome (PKS) is a rare disorder presenting with developmental delay, numerous dysmorphic features, and skin pigmentation anomalies. It is caused by mosaic tetrasomy of the short arm of chromosome 12. In most instances, tetrasomy is due to a supernumerary isochromosome i(12)(p10). Although mitotic instability is a generally accepted behavior for supernumerary chromosomes, hexasomy 12p due to a gain of an isochromosome 12p, has been hardly ever reported. We report a 10 year follow-up on a girl with 2 copies of isochromosome consisting of the short arm of chromosome 12, who has craniofacial features seen in PKS, such as sparse hair with an unusual pattern, sparse eyebrows, lacrimal duct stenosis, submucous cleft palate, Pallister lip (a relatively long philtrum continuing into the vermillion border of the upper lip), narrow palate, and wide alveolar ridges. She also has other abnormalities, including unilateral renal dysgenesis, rectovaginal fistula, pre-axial polydactyly of the right hand, severe global developmental delay, and hypotonia as well as some features suggestive of mosaicism such as bilateral asymmetry, patchy areas of rough skin, and retinal mottling. Initial cytogenetic studies from peripheral blood showed a normal female karyotype. Further cytogenetic studies on a skin biopsy showed mosaicism with 2 copies of the supernumerary isochromosome 12p.

3.
Cytogenet Genome Res ; 159(1): 19-25, 2019.
Article in English | MEDLINE | ID: mdl-31487712

ABSTRACT

The role of autosomal recessive (AR) variants in clinically heterogeneous conditions such as intellectual disability and developmental delay (ID/DD) has been difficult to uncover. Implication of causative pathogenic AR variants often requires investigation within large and consanguineous families, and/or identifying rare biallelic variants in affected individuals. Furthermore, detection of homozygous gene-level copy number variants during first-line genomic microarray testing in the pediatric population is a rare finding. We describe a 6.7-year-old male patient with ID/DD and a novel homozygous deletion involving the FRY gene identified by genomic SNP microarray. This deletion was observed within a large region of homozygosity on the long arm of chromosome 13 and in a background of increased low-level (2.6%) autosomal homozygosity, consistent with a reported common ancestry in the family. FRY encodes a protein that regulates cell cytoskeletal dynamics, functions in chromosomal alignment in mitosis in vitro, and has been shown to function in the nervous system in vivo. Homozygous mutation of FRY has been previously reported in 2 consanguineous families from studies of autosomal recessive ID in Middle Eastern and Northern African populations. This report provides additional supportive evidence that deleterious biallelic mutation of FRY is associated with ID/DD and illustrates the utility of genomic SNP microarray detection of low-level homozygosity.


Subject(s)
Cell Cycle Proteins/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Sequence Deletion/genetics , Base Sequence/genetics , Child , Consanguinity , Cytoskeleton/genetics , Cytoskeleton/metabolism , Humans , Male , Polymorphism, Single Nucleotide/genetics
4.
Genes Chromosomes Cancer ; 58(8): 551-557, 2019 08.
Article in English | MEDLINE | ID: mdl-30706625

ABSTRACT

The t(7;21)(p22;q22) resulting in RUNX1-USP42 fusion, is a rare but recurrent cytogenetic abnormality associated with acute myeloid leukemia (AML) and myelodysplastic syndromes. The prognostic significance of this translocation has not been well established due to the limited number of patients. Herein, we report three pediatric AML patients with t(7;21)(p22;q22). All three patients presented with pancytopenia or leukopenia at diagnosis, accompanied by abnormal immunophenotypic expression of CD7 and CD56 on leukemic blasts. One patient had t(7;21)(p22;q22) as the sole abnormality, whereas the other two patients had additional numerical and structural aberrations including loss of 5q material. Fluorescence in situ hybridization analysis on interphase cells or sequential examination of metaphases showed the RUNX1 rearrangement and confirmed translocation 7;21. Genomic SNP microarray analysis, performed on DNA extracted from the bone marrow from the patient with isolated t(7;21)(p22;q22), showed a 32.2 Mb copy neutral loss of heterozygosity (cnLOH) within the short arm of chromosome 11. After 2-4 cycles of chemotherapy, all three patients underwent allogeneic hematopoietic stem cell transplantation (HSCT). One patient died due to complications related to viral reactivation and graft-versus-host disease. The other two patients achieved complete remission after HSCT. Our data displayed the accompanying cytogenetic abnormalities including del(5q) and cnLOH of 11p, the frequent pathological features shared with other reported cases, and clinical outcome in pediatric AML patients with t(7;21)(p22;q22). The heterogeneity in AML harboring similar cytogenetic alterations may be attributed to additional uncovered genetic lesions.


Subject(s)
Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 7 , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Translocation, Genetic , Adolescent , Age Factors , Biomarkers , Biomarkers, Tumor , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Immunophenotyping , Male , Phenotype
5.
Eur J Med Genet ; 62(1): 9-14, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29698806

ABSTRACT

DICER1 encodes an RNase III endonuclease protein that regulates the production of small non-coding RNAs. Germline mutations in DICER1 are associated with an autosomal dominant hereditary cancer predisposition syndrome that confers an increased risk for the development of several rare childhood and adult-onset tumors, the most frequent of which include pleuropulmonary blastoma, ovarian sex cord-stromal tumors, cystic nephroma, and thyroid gland neoplasia. The majority of reported germline DICER1 mutations are truncating sequence-level alterations, suggesting that a loss-of-function type mechanism drives tumor formation in DICER1 syndrome. However, reports of patients with germline DICER1 whole gene deletions are limited, and thus far, only two have reported an association with tumor development. Here we report the clinical findings of three patients from two unrelated families with 14q32 deletions that encompass the DICER1 locus. The deletion identified in Family I is 1.4 Mb and was initially identified in a 6-year-old male referred for developmental delay, hypotonia, macrocephaly, obesity, and behavioral problems. Subsequent testing revealed that this deletion was inherited from his mother, who had a clinical history that included bilateral multinodular goiter and papillary thyroid carcinoma. The second deletion is 5.0 Mb and was identified in a 15-year-old female who presented with autism, coarse facial features, Sertoli-Leydig cell tumor, and Wilms' tumor. These findings provide additional supportive evidence that germline deletion of DICER1 confers an increased risk for DICER1-related tumor development, and provide new insight into the clinical significance of deletions involving the 14q32 region.


Subject(s)
Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 14/genetics , DEAD-box RNA Helicases/genetics , Developmental Disabilities/genetics , Neoplasms/genetics , Ribonuclease III/genetics , Adolescent , Adult , Child , Chromosome Disorders/pathology , Developmental Disabilities/pathology , Female , Humans , Male , Neoplasms/pathology , Pedigree , Syndrome
6.
J Clin Pathol ; 71(4): 372-378, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29197855

ABSTRACT

AIMS: Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). METHODS: For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. RESULTS: We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. CONCLUSIONS: We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay.


Subject(s)
DNA Copy Number Variations/genetics , High-Throughput Nucleotide Sequencing/methods , Myeloproliferative Disorders/genetics , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics
7.
Am J Med Genet A ; 170(10): 2580-6, 2016 10.
Article in English | MEDLINE | ID: mdl-27549381

ABSTRACT

In 1994, Braddock and Carey first reported two unrelated girls with a new multiple malformation syndrome. The primary features included Pierre Robin sequence, persistent neonatal-onset thrombocytopenia, agenesis of the corpus callosum, a distinctive facies, enamel hypoplasia, and severe developmental delay. Since that time, there have been multiple other reported patients with a similar phenotype. In addition, several reports of thrombocytopenia and developmental delay have been documented in association with deletions in the Down syndrome critical region at 21q22. The similarity of the reported cases with deletions involving 21q22 with the clinical presentation of the two patients with Braddock-Carey syndrome resulted in a reinvestigation of the genetic etiology of these two patients 20 years after the original study. This investigation provides evidence that the etiology of this and other "Fanconi-like" disorders represent a newly recognized contiguous gene deletion syndrome involving 21q22 and specifically, the RUNX1 gene. © 2016 Wiley Periodicals, Inc.


Subject(s)
Agenesis of Corpus Callosum/diagnosis , Agenesis of Corpus Callosum/genetics , Chromosome Deletion , Chromosomes, Human, Pair 21 , Core Binding Factor Alpha 2 Subunit/genetics , Growth Disorders/diagnosis , Growth Disorders/genetics , Pierre Robin Syndrome/diagnosis , Pierre Robin Syndrome/genetics , Thrombocytopenia/congenital , Child, Preschool , Comparative Genomic Hybridization , Facies , Fatal Outcome , Female , Genetic Association Studies , Humans , Infant , Phenotype , Polymorphism, Single Nucleotide , Thrombocytopenia/diagnosis , Thrombocytopenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...