Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 70(5): 982-989, 2017 11.
Article in English | MEDLINE | ID: mdl-28874464

ABSTRACT

The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of ß-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated kinase 1/2) and Akt after MAS1R stimulation. Human embryonic kidney 293T cells were transfected with the coding sequence for MAS1R-YFP (MAS1R fused to yellow fluorescent protein). MAS1R internalization was evaluated by measuring the MAS1R present in the plasma membrane after agonist stimulation using a ligand-binding assay. MAS1R trafficking was evaluated by its colocalization with trafficking markers. MAS1R internalization was blocked in the presence of shRNAcaveolin-1 and with dominant negatives for Eps15 (a protein involved in endocytosed Rs by clathrin-coated pits) and for dynamin. After stimulation, MAS1R colocalized with Rab11-a slow recycling vesicle marker-and not with Rab4-a fast recycling vesicle marker-or LysoTracker-a lysosome marker. Cells transfected with MAS1R showed an increase in Akt and ERK1/2 activation on angiotensin-(1-7) stimulation, which was blocked when the clathrin-coated pits pathway was blocked. Suppression of ß-arrestin2 by shRNA reduced the angiotensin-(1-7)-induced ERK1/2 activation, whereas Akt activation was not modified. We conclude that on agonist stimulation, MAS1R is internalized through clathrin-coated pits and caveolae in a dynamin-dependent manner and is then slowly recycled back to the plasma membrane. MAS1R induced Akt and ERK1/2 activation from early endosomes, and the activation of ERK1/2 was mediated by ß-arrestin2. Thus, MAS1R activity and density may be tightly controlled by the cell.


Subject(s)
Angiotensin I/metabolism , Endocytosis/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Peptide Fragments/metabolism , Protein Transport/physiology , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 2/metabolism , Endosomes/physiology , HEK293 Cells , Humans , Proto-Oncogene Mas , Signal Transduction/physiology
3.
Clin Sci (Lond) ; 127(5): 295-306, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24827941

ABSTRACT

The RAS (renin-angiotensin system) is composed of two arms: the pressor arm containing AngII (angiotensin II)/ACE (angiotensin-converting enzyme)/AT1Rs (AngII type 1 receptors), and the depressor arm represented by Ang-(1-7) [angiotensin-(1-7)]/ACE2/Mas receptors. All of the components of the RAS are present in the brain. Within the brain, Ang-(1-7) contributes to the regulation of BP (blood pressure) by acting at regions that control cardiovascular function such that, when Ang-(1-7) is injected into the nucleus of the solitary tract, caudal ventrolateral medulla, paraventricular nucleus or anterior hypothalamic area, a reduction in BP occurs; however, when injected into the rostral ventrolateral medulla, Ang-(1-7) stimulates an increase in BP. In contrast with AngII, Ang-(1-7) improves baroreflex sensitivity and has an inhibitory neuromodulatory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to BP regulation, but also acts as a cerebroprotective component of the RAS by reducing cerebral infarct size and neuronal apoptosis. In the present review, we provide an overview of effects elicited by Ang-(1-7) in the brain, which suggest a potential role for Ang-(1-7) in controlling the central development of hypertension.


Subject(s)
Brain/physiology , Renin-Angiotensin System/physiology , Angiotensin I/metabolism , Angiotensin II/physiology , Angiotensin-Converting Enzyme 2 , Animals , Baroreflex/drug effects , Blood Pressure/drug effects , Brain/metabolism , Neurotransmitter Agents/metabolism , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/physiology , Proto-Oncogene Mas , Proto-Oncogene Proteins/physiology , Rats , Receptor, Angiotensin, Type 1/physiology , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology
4.
Clin Sci (Lond) ; 125(2): 57-65, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23530669

ABSTRACT

Ang-(1-7) [angiotensin-(1-7)] constitutes an important functional end-product of the RAS (renin-angiotensin system) endogenously formed from AngI (angiotensin I) or AngII (angiotensin II) through the catalytic activity of ACE2 (angiotensin-converting enzyme 2), prolyl carboxypeptidase, neutral endopeptidase or other endopeptidases. Ang-(1-7) lacks the pressor, dipsogenic or stimulatory effect on aldosterone release characteristic of AngII. In contrast, it produces vasodilation, natriuresis and diuresis, and inhibits angiogenesis and cell growth. At the central level, Ang-(1-7) acts at sites involved in the control of cardiovascular function, thus contributing to blood pressure regulation. This action may result from its inhibitory neuromodulatory action on NE [noradrenaline (norepinephrine)] levels at the synaptic cleft, i.e. Ang-(1-7) reduces NE release and synthesis, whereas it causes an increase in NE transporter expression, contributing in this way to central NE neuromodulation. Thus, by selective neurotransmitter release, Ang-(1-7) may contribute to the overall central cardiovascular effects. In the present review, we summarize the central effects of Ang-(1-7) and the mechanism by which the peptide modulates NE levels in the synaptic cleft. We also provide new evidences of its cerebroprotective role.


Subject(s)
Angiotensin I/metabolism , Central Nervous System/metabolism , Neurotransmitter Agents/metabolism , Peptide Fragments/metabolism , Synapses/metabolism , Animals , Humans , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism
5.
Brain Res ; 1453: 1-7, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22483959

ABSTRACT

Increased blood pressure in hypertension is hypothesized to be caused by high sympathetic nervous system (SNS) activity. Since Ang (1-7) exerts an inhibitory neuromodulatory effect on the SNS through a NO-mediated mechanism, we tested the hypothesis that Ang (1-7) alters centrally nitric oxide synthase (NOS) activity and expression in spontaneously hypertensive rats (SHR). Since NOS activity is altered in relation to the development of hypertension in rats, we evaluated the effect of Ang-(1-7) on hypothalamic NOS activity in two different ages in SHR, corresponding to a prehypertensive phase (3-4 weeks) and a established hypertension (13-14 weeks) and compared with age-matched Wistar-Kyoto (WKY) rats. NOS activity was measured by the conversion of [³H]L-arginine to citrulline. Ang-(1-7) caused an impairment in NOS activity in prehypertensive SHR (26 ± 4% reduction), while it induced an increase in NOS activity at established hypertension (48 ± 9% increase). In contrast, Ang-(1-7) did not modify NOS activity in age-matched WKY rats. In another set of experiments, Ang-(1-7) was injected into the anterior hypothalamic area, mean arterial blood pressure (MAP) was registered and after 30, 60 and 180 min nNOS expression was evaluated by Western-blot. Ang-(1-7) decreased MAP after 10 min of injection and this effect was blocked by a NOS inhibitor. nNOS expression increased after 180 min of Ang-(1-7) intrahypothalamic injection in both WKY and SHR (WKY: 3.6-fold increase above basal; SHR: 1.85-fold increase above basal). Our results suggest that Ang-(1-7) upregulates hypothalamic NOS in a hypertensive state as a compensatory and protective mechanism to combat hypertension.


Subject(s)
Angiotensin I/pharmacology , Hypertension/enzymology , Hypothalamus/drug effects , Nitric Oxide Synthase Type I/metabolism , Peptide Fragments/pharmacology , Up-Regulation/drug effects , Animals , Blood Pressure/drug effects , Hypothalamus/enzymology , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY
6.
J Neurochem ; 120(1): 46-55, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22026649

ABSTRACT

As angiotensin (Ang) (1-7) decreases norepinephrine (NE) content in the synaptic cleft, we investigated the effect of Ang-(1-7) on NE neuronal uptake in spontaneously hypertensive rats. [(3)H]-NE neuronal uptake was measured in isolated hypothalami. NE transporter (NET) expression was evaluated in hypothalamic neuronal cultures by western-blot. Ang-(1-7) lacked an acute effect on neuronal NE uptake. Conversely, Ang-(1-7) caused an increase in NET expression after 3 h incubation (40 ± 7%), which was blocked by the Mas receptor antagonist, a PI3-kinase inhibitor or a MEK1/2 inhibitor suggesting the involvement of Mas receptor and the PI3-kinase/Akt and MEK1/2-ERK1/2 pathways in the Ang-(1-7)-stimulated NET expression. Ang-(1-7) through Mas receptors stimulated Akt and ERK1/2 activities in spontaneously hypertensive rat neurons. Cycloheximide attenuated Ang-(1-7) stimulation of NET expression suggesting that Ang-(1-7) stimulates NET synthesis. In fact, Ang-(1-7) increased NET mRNA levels. Thus, we evaluated the long-term effect of Ang-(1-7) on neuronal NE uptake after 3 h incubation. Under this condition, Ang-(1-7) increased neuronal NE uptake by 60 ± 14% which was blocked by cycloheximide and the Mas receptor antagonist. Neuronal NE uptake and NET expression were decreased after 3 h incubation with an anti-Ang-(1-7) antibody. Ang-(1-7) induces a chronic stimulatory effect on NET expression. In this way, Ang-(1-7) may regulate a pre-synaptic mechanism in maintaining appropriate synaptic NE levels during hypertensive conditions.


Subject(s)
Angiotensin I/pharmacology , Mitogen-Activated Protein Kinase 1/physiology , Mitogen-Activated Protein Kinase 3/physiology , Neurons/metabolism , Norepinephrine Plasma Membrane Transport Proteins/biosynthesis , Oncogene Protein v-akt/physiology , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/drug effects , Receptors, G-Protein-Coupled/drug effects , Signal Transduction/drug effects , Animals , Blotting, Western , Cells, Cultured , Proto-Oncogene Mas , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...