Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Perspect ; 102 Suppl 1: 283-9, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8187720

ABSTRACT

Droplets of toluene and three chlorinated organics, ortho-dichlorobenzene, 1,2-dichloroethane, and trichloroethylene, were pyrolyzed in pure nitrogen. The composition and bacterial mutagenicity of the product tars were measured. The presence of organic chlorine was found to affect both pyrolysis product tar composition and total tar mutagenicity. Pyrolysis in the absence of chlorine produced tars whose bacterial mutagenicity was found to be largely due to the presence of cyclopenta[cd]pyrene, fluoranthene, and benzo[a]pyrene. Small amounts of chlorine in the fuel (i.e., Cl/H molar ratios of less than 0.3) enhanced the formation of highly condensed polycyclic aromatic hydrocarbons (including cyclopenta[cd]pyrene) and increased tar mutagenicity. Larger amounts of organic chlorine (Cl/H ratios of between 0.3 and 0.6) resulted in significant yields of mono- and dichlorinated aromatics and higher levels of tar mutagenicity, which could not be accounted for by the presence of mutagens produced by pyrolysis in the absence of chlorine. Furthermore, unlike tars containing little or no chlorine, tars containing aryl chlorine were more mutagenic in the absence of added enzymes (intended to mimic in vivo mammalian metabolism) than in their presence. We hypothesize that at least one of the chlorinated aromatic products is strongly mutagenic. Two specific conditions that gave notably different results were a) the low-temperature (i.e., below 1400 K) pyrolysis of ortho-dichlorobenzene, which produced tri- and tetrachlorinated biphenyls almost exclusively; and b) the chlorine-rich pyrolysis of trichloroethylene, during which mostly perchloroaromatics were formed. Neither of these tars was found to mutate bacteria.


Subject(s)
Hydrocarbons, Chlorinated/toxicity , Tars/toxicity , Mutagenicity Tests , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
3.
Environ Health Perspect ; 101(2): 146-53, 1993 Jun.
Article in English | MEDLINE | ID: mdl-8354201

ABSTRACT

A number of isomeric C18H10 polycyclic aromatic hydrocarbons (PAHs), thought to be primarily cyclopenta-fused PAHs, are produced during the combustion and pyrolysis of fossil fuels. To determine the importance of their contributions to the total mutagenic activity of combustion and pyrolysis samples in which they are found, we characterized reference quantities of four C18H10 CP-PAHs: benzo[ghi]fluoranthene (BF), cyclopenta[cd]pyrene (CPP), cyclopent[hi]acephenanthrylene (CPAP), and cyclopent[hi]aceanthrylene (CPAA). Synthesis of CPAA and CPAP is described. The availability of reference samples of these isomers also proved to be an essential aid in the identification of the C18H10 species often found in combustion and pyrolysis samples. Chemical analysis of selected combustion and pyrolysis samples showed that CPP was generally the most abundant C18H10 isomer, followed by CPAP and BF. CPAA was detected only in pyrolysis products from pure PAHs. We tested the four C18H10 PAHs for mutagenicity in a forward mutation assay using S. typhimurium. CPP, BF, and CPAA were roughly twice as mutagenic as benzo[a]pyrene (BaP), whereas CPAP was only slightly active. These PAHs were also tested for mutagenic activity in human cells. In this assay, CPP and CPAA were strongly mutagenic but less active than BaP, whereas CPAP and BF were inactive at the dose levels tested. Also, the bacterial and human cell mutagenicity of CPAA and CPAP were compared with the mutagenicity of their monocyclopenta-fused analogs, aceanthrylene and acephenanthyrlene. Although the mutagenicities of CPAP and acephenanthrylene are similar, the mutagenic activity of CPAA is an order of magnitude greater than that of aceanthyrlene.


Subject(s)
Fossil Fuels , Mutagenicity Tests , Polycyclic Compounds/adverse effects , Salmonella typhimurium/drug effects , Cell Line , Humans , Oxidation-Reduction , Polycyclic Compounds/chemistry , Polycyclic Compounds/classification , Spectrophotometry
4.
Environ Health Perspect ; 90: 305-14, 1991 Jan.
Article in English | MEDLINE | ID: mdl-2050079

ABSTRACT

Combustion sampling for toxicological assessment often requires that large (greater than 100 mg) lots of complex organic mixtures of wide volatility range be rapidly recovered from high temperature gases without contamination. A new sampler, meeting these criteria for studies of public health interest, has been developed and demonstrated. The device provides high sampling rates and intimate contacting of the samples stream with large volumes of a well-cooled, liquid solvent, dichloromethane (DCM). This promotes rapid organics dissolution from carrier gas and particulates and prompt dilution and quenching of the resulting solution, resulting in high organics collection efficiencies with minimal DCM losses. Solvent separation then remits large quantities of concentrated organics for chemical analysis and toxicological testing. One- to seven-hour interrogations of in-flame, post-flame, and flue gas regions gave 50- to 250-mg yields of complex organic mixtures. In side-by-side sampling of combustion exhaust, the DCM sampler provided higher yields of DCM solubles (identified with complex organic mixtures) and of S. typhimuirim mutagens (active without exogenous metabolizing agents) than did a filter/polymeric sorbent bed sampling train. The new sampler also collects polar and high volatile hydrocarbons such as benzaheyde, pentadiyne, m- and p-diethynyl-benzene, and 1-hexen-3,5-diyne. Nitration of naphthalene and pyrene in DCM solution (1 mg/mL each) was less than 1 part in 10(7) after a 345-min exposure to a bubbling flow of moist N2/air mixture (1:1 v/v) containing 107 ppm NO and 1.5 ppm NO2, indicating that for these condition a DCM sampler should resist artifactual nitration of aromatics. However, because of the very high bacterial mutagenicity of some nitroaromatics and the wide range of sampling conditions of environmental interest, nitration and all artifacts must still be scrutinized when using the DCM sampler. The DCM sampler is expected to contribute to public health impact assessments by facilitating detailed determinations of the identities, compositions, concentrations, sources, formation mechanisms, and biological activity of environmental toxicants in gaseous atmospheres.


Subject(s)
Environmental Monitoring/instrumentation , Hazardous Waste , Refuse Disposal/methods , Atmospheric Pressure , Equipment Design , Filtration/instrumentation , Mutagens/analysis , Nitrates/analysis , Polycyclic Compounds/analysis , Polymers , Reference Standards , Solvents , Volatilization
5.
Appl Opt ; 30(21): 3003-10, 1991 Jul 20.
Article in English | MEDLINE | ID: mdl-20706348

ABSTRACT

Pulsed laser Rayleigh scattering is used to obtain instantaneous flame temperatures in a turbulent flow combustor with poor optical access, a background of black body radiation, and laser induced glare. A novel method based on polarization is used for the extraction of the Rayleigh scattering. Probability density functions (PDFs) of the fluctuating temperature are obtained for fuel lean ethylene-air combustion. The smearing effects of shot noise are removed from the observed PDFs to obtain the actual fluctuating temperature PDF.

6.
Environ Health Perspect ; 84: 193-201, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2190813

ABSTRACT

The polycyclic aromatic compounds (PAC) produced from the pyrolysis of a bituminous coal at temperatures of 1125 to 1425 degrees K prove to be mutagenic to S. typhimurium, both in the presence and in the absence of postmitochondrial supernatant (PMS) prepared from Aroclor 1254-induced rat liver. Mutagenicity of the PAC samples measured in the absence of PMS exhibits little dependence on pyrolysis temperature; that measured in its presence is higher at the higher pyrolysis temperatures. However, because of the decrease in PAC yield as the temperature is raised, mutagenicity per mass of coal consumed falls with an increase in temperature if measured without PMS (-PMS) and peaks at an intermediate temperature of 1378 degrees K if measured with PMS (+PMS). Using a new chromatographic technique, we have split each coal-derived PAC sample into two fractions: LC1, containing PAC with alkyl and O-containing substitutions and LC2, consisting of unsubstituted PAC. Substituted (LC1) fractions show no significant +PMS mutagenicity, indicating that, as a whole, the alkylated PAC in our coal pyrolysis products are not mutagenic. Only at the higher temperatures do the substituted fractions exhibit significant -PMS mutagenicity, attributed to PAC with carbonyl or etheric functionalities. The extremely low yields of the substituted PAC under the conditions where they show some activity, however, ensure that they contribute little to overall mutagenicity. In contrast to the substituted fractions, the unsubstituted (LC2) fractions display significant mutagenicity under all conditions and appear to be responsible for virtually all of the mutagenicity in these coal-derived PAC samples. In this fraction, -PMS activity is attributed to nitrogen-containing heterocyclic aromatics.


Subject(s)
Coal/analysis , Mutagens , Polycyclic Compounds/toxicity , Animals , Chromatography, High Pressure Liquid , In Vitro Techniques , Mutagenicity Tests , Polycyclic Compounds/analysis , Rats , Salmonella typhimurium/genetics
7.
Environ Health Perspect ; 73: 223-34, 1987 Aug.
Article in English | MEDLINE | ID: mdl-3665865

ABSTRACT

Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low smoke samples (8). Oxygen-containing PAH, typified by phenalene-1-one and its alkyl derivatives, are important mutagens from cyclic firing at high smoke conditions. Thus, oil burner effluents differ markedly from those of several other combustors, including the automotive diesel engine, where multiring PAH, typified by fluoranthene and alkylated phenanthrenes, account for a significant portion of the effluent mutagenicity. Implications for combustion and emissions source identification are discussed.


Subject(s)
Air Pollutants/analysis , Fuel Oils , Petroleum , Smoke/analysis , Chromatography, Gas/methods , Chromatography, High Pressure Liquid/methods , Fuel Oils/analysis , Gas Chromatography-Mass Spectrometry/methods , Hot Temperature , Methods , Petroleum/analysis
8.
Science ; 191(4225): 338, 1976 Jan 30.
Article in English | MEDLINE | ID: mdl-17782890
SELECTION OF CITATIONS
SEARCH DETAIL
...