Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Aquat Toxicol ; 144-145: 186-98, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24177219

ABSTRACT

Bisphenol A (BPA) is commonly used by manufacturers and can be found in many aquatic ecosystems. Data relative to BPA ecotoxicity are only available for studies in laboratory conditions on macro-invertebrates and fish. There is thus a lack of information for other trophic levels such as macrophytes. Moreover, the impacts of BPA within an ecosystem context, i.e. with populations from different trophic levels studied at long term in environmental conditions, have never been assessed. We carried out a long-term lotic mesocosm study in 20 m long channels under three exposure concentrations of BPA (nominal concentrations of 0, 1, 10 and 100 µg/L) delivered continuously for 165 days. Three trophic levels were followed: macrophytes, macro-invertebrates (with a focus on Radix balthica) and fish (Gasterosteus aculeatus). Significant effects were shown at 100 µg/L BPA on the three trophic levels. BPA had a direct impact on macrophyte community structure, direct and indirect impacts on macro-invertebrates and on fish population structure. Gonad morphology of fish was affected at 1 and 10 µg/L of BPA, respectively for female and male sticklebacks. In addition to these ecotoxicity data, our results suggest that fish are good integrators of the responses of other communities (including macro-invertebrates and macrophytes) in mesocosm systems.


Subject(s)
Benzhydryl Compounds/toxicity , Chlorophyta/drug effects , Ecosystem , Invertebrates/drug effects , Phenols/toxicity , Smegmamorpha , Water Pollutants, Chemical/toxicity , Animals , Benzhydryl Compounds/analysis , Female , Gonads/drug effects , Male , Phenols/analysis , Population Density , Rivers/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL