Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 204(1): 206-220, 2024 01.
Article in English | MEDLINE | ID: mdl-37726227

ABSTRACT

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Humans , Animals , Mice , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/complications , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Prognosis , Biomarkers , Interferons/therapeutic use
2.
STAR Protoc ; 2(2): 100549, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34095863

ABSTRACT

CD8+ T cells are key effector cells in adaptive immune responses against intracellular pathogens and cancer cells. Systemic drug treatments, like chemotherapy, may positively or negatively affect CD8+ T cell function. In this protocol, we describe robust and optimized ex vivo polyclonal activation and cell culture conditions to measure drug treatments' effects on primary human CD8+ T cell activation and cytolytic potential. We provide streamlined methods for measuring effector cytokines and activation markers of CD8+ T cells via flow cytometry. For complete details on the use and execution of this protocol, please refer to Loo Yau et al. (2021).


Subject(s)
CD8-Positive T-Lymphocytes , Cytokines , Flow Cytometry/methods , Antineoplastic Agents/pharmacology , Biomarkers/analysis , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Separation/methods , Cells, Cultured , Cytokines/analysis , Cytokines/metabolism , Humans
3.
Mol Cell ; 81(7): 1469-1483.e8, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33609448

ABSTRACT

We demonstrate that DNA hypomethylating agent (HMA) treatment can directly modulate the anti-tumor response and effector function of CD8+ T cells. In vivo HMA treatment promotes CD8+ T cell tumor infiltration and suppresses tumor growth via CD8+ T cell-dependent activity. Ex vivo, HMAs enhance primary human CD8+ T cell activation markers, effector cytokine production, and anti-tumor cytolytic activity. Epigenomic and transcriptomic profiling shows that HMAs vastly regulate T cell activation-related transcriptional networks, culminating with over-activation of NFATc1 short isoforms. Mechanistically, demethylation of an intragenic CpG island immediately downstream to the 3' UTR of the short isoform was associated with antisense transcription and alternative polyadenylation of NFATc1 short isoforms. High-dimensional single-cell mass cytometry analyses reveal a selective effect of HMAs on a subset of human CD8+ T cell subpopulations, increasing both the number and abundance of a granzyme Bhigh, perforinhigh effector subpopulation. Overall, our findings support the use of HMAs as a therapeutic strategy to boost anti-tumor immune response.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CpG Islands/immunology , DNA Methylation/drug effects , Decitabine/pharmacology , Granzymes/immunology , Lymphocyte Activation/drug effects , DNA Methylation/immunology , Humans , NFATC Transcription Factors/immunology , Perforin/immunology
4.
Nat Cell Biol ; 23(1): 87-98, 2021 01.
Article in English | MEDLINE | ID: mdl-33420488

ABSTRACT

Prostate cancer shows remarkable clinical heterogeneity, which manifests in spatial and clonal genomic diversity. By contrast, the transcriptomic heterogeneity of prostate tumours is poorly understood. Here we have profiled the transcriptomes of 36,424 single cells from 13 prostate tumours and identified the epithelial cells underlying disease aggressiveness. The tumour microenvironment (TME) showed activation of multiple progression-associated transcriptomic programs. Notably, we observed promiscuous KLK3 expression and validated the ability of cancer cells in altering T-cell transcriptomes. Profiling of a primary tumour and two matched lymph nodes provided evidence that KLK3 ectopic expression is associated with micrometastases. Close cell-cell communication exists among cells. We identified an endothelial subset harbouring active communication (activated endothelial cells, aECs) with tumour cells. Together with sequencing of an additional 11 samples, we showed that aECs are enriched in castration-resistant prostate cancer and promote cancer cell invasion. Finally, we created a user-friendly web interface for users to explore the sequenced data.


Subject(s)
Biomarkers, Tumor/genetics , Cell Lineage/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/pathology , Single-Cell Analysis/methods , Transcriptome , Tumor Microenvironment , Cell Survival , Computational Biology , Disease Progression , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Prostatic Neoplasms/genetics
5.
Immunity ; 54(1): 11-13, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33440135

ABSTRACT

In a recent issue of Cell, Bowling et al. describe a mechanism by which spliceosome-targeted therapies result in intron-containing transcripts that form double-stranded RNAs (dsRNAs), thereby activating tumor antiviral signaling (viral mimicry) and downstream adaptive immunity.


Subject(s)
RNA, Double-Stranded , Spliceosomes , Adaptive Immunity , Antiviral Agents/pharmacology , Signal Transduction/drug effects
6.
Nature ; 588(7836): 169-173, 2020 12.
Article in English | MEDLINE | ID: mdl-33087935

ABSTRACT

Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor1-6. This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses7,8. However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of 'orphan' CpG islands9. In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA10, which prevents activation of the MDA5 receptor11. We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment.


Subject(s)
Adenosine Deaminase/metabolism , Alu Elements/drug effects , Alu Elements/genetics , Decitabine/pharmacology , Decitabine/therapeutic use , Epigenesis, Genetic/drug effects , RNA-Binding Proteins/metabolism , Transcription, Genetic/drug effects , Adaptive Immunity/drug effects , Adenosine Deaminase/deficiency , Alu Elements/immunology , Animals , Cell Line, Tumor , CpG Islands/drug effects , CpG Islands/genetics , DNA, Intergenic/drug effects , DNA, Intergenic/genetics , DNA, Intergenic/immunology , DNA-Cytosine Methylases/antagonists & inhibitors , Feedback, Physiological , Humans , Immunity, Innate/drug effects , Interferon-Induced Helicase, IFIH1/metabolism , Introns/drug effects , Introns/genetics , Introns/immunology , Inverted Repeat Sequences/drug effects , Inverted Repeat Sequences/genetics , Inverted Repeat Sequences/immunology , Male , Mice , Molecular Mimicry/drug effects , Molecular Mimicry/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , RNA, Double-Stranded/drug effects , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology , RNA-Binding Proteins/antagonists & inhibitors , Viruses/drug effects , Viruses/immunology
7.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32753546

ABSTRACT

PURPOSE: To evaluate whether administration of the oral DNA hypomethylating agent CC-486 enhances the poor response rate of immunologically 'cold' solid tumors to immune checkpoint inhibitor durvalumab. EXPERIMENTAL DESIGN: PD-L1/PD-1 inhibitor naïve patients with advanced microsatellite stable colorectal cancer; platinum resistant ovarian cancer; and estrogen receptor positive, HER2 negative breast cancer were enrolled in this single-institution, investigator-initiated trial. Two 28 day regimens, regimen A (CC-486 300 mg QD Days 1-14 (cycles 1-3 only) in combination with durvalumab 1500 mg intravenous day 15) and regimen B (CC-486 100 mg QD days 1-21 (cycle 1 and beyond), vitamin C 500 mg once a day continuously and durvalumab 1500 mg intravenous day 15) were investigated. Patients underwent paired tumor biopsies and serial peripheral blood mononuclear cells (PBMCs) collection for immune-profiling, transcriptomic and epigenomic analyzes. RESULTS: A total of 28 patients were enrolled, 19 patients treated on regimen A and 9 on regimen B. The combination of CC-486 and durvalumab was tolerable. Regimen B, with a lower dose of CC-486 extended over a longer treatment course, showed less grade 3/4 adverse effects. Global LINE-1 methylation assessment of serial PBMCs and genome-wide DNA methylation profile in paired tumor biopsies demonstrated minimal changes in global methylation in both regimens. The lack of robust tumor DNA demethylation was accompanied by an absence of the expected 'viral mimicry' inflammatory response, and consequently, no clinical responses were observed. The disease control rate was 7.1%. The median progression-free survival was 1.9 months (95% CI 1.5 to 2.3) and median overall survival was 5 months (95% CI 4.5 to 10). CONCLUSIONS: The evaluated treatment schedules of CC-486 in combination with durvalumab did not demonstrate robust pharmacodynamic or clinical activity in selected immunologically cold solid tumors. Lessons learned from this biomarker-rich study should inform continued drug development efforts using these agents. TRIAL REGISTRATION NUMBER: NCT02811497.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , DNA Methylation/genetics , Neoplasms/drug therapy , Aged , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Female , Humans , Male , Middle Aged
8.
Trends Cell Biol ; 29(1): 31-43, 2019 01.
Article in English | MEDLINE | ID: mdl-30153961

ABSTRACT

During cancer initiation and progression, the somatic epigenome is broadly reprogrammed. This reprogramming can be a consequence of several processes, including altered transcriptional profiles and mutations. In addition, immune cells infiltrating the tumor microenvironment display a reprogrammed epigenome. For instance, tumor infiltrating T cells frequently exhibit an exhausted phenotype characterized by aberrant DNA methylation. Moreover, these aberrant epigenomes of cancer cells and infiltrating immune cells may represent a cancer vulnerability. Accumulating evidence supports the potential of using epigenetic therapy to not only reactivate silenced genes in cancer cells, but to also increase antitumor immunogenicity, by reactivation of endogenous retroviruses, to increase tumor immune-infiltration, and to reinvigorate T cell exhaustion. These findings highlight the potential synergies between epigenetic therapies and immunotherapy.


Subject(s)
Epigenesis, Genetic/genetics , Immunotherapy/methods , Neoplasms/genetics , Neoplasms/therapy , DNA Methylation/genetics , Humans , Neoplasms/immunology , Neoplasms/virology , Phenotype , Tumor Microenvironment/genetics
9.
Cell ; 162(5): 961-73, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317465

ABSTRACT

DNA-demethylating agents have shown clinical anti-tumor efficacy via an unknown mechanism of action. Using a combination of experimental and bioinformatics analyses in colorectal cancer cells, we demonstrate that low-dose 5-AZA-CdR targets colorectal cancer-initiating cells (CICs) by inducing viral mimicry. This is associated with induction of dsRNAs derived at least in part from endogenous retroviral elements, activation of the MDA5/MAVS RNA recognition pathway, and downstream activation of IRF7. Indeed, disruption of virus recognition pathways, by individually knocking down MDA5, MAVS, or IRF7, inhibits the ability of 5-AZA-CdR to target colorectal CICs and significantly decreases 5-AZA-CdR long-term growth effects. Moreover, transfection of dsRNA into CICs can mimic the effects of 5-AZA-CdR. Together, our results represent a major shift in understanding the anti-tumor mechanisms of DNA-demethylating agents and highlight the MDA5/MAVS/IRF7 pathway as a potentially druggable target against CICs.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/analogs & derivatives , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Azacitidine/pharmacology , Cells, Cultured , DEAD-box RNA Helicases/metabolism , DNA Methylation/drug effects , Decitabine , Endogenous Retroviruses/metabolism , Humans , Interferon Regulatory Factor-7/metabolism , Interferon-Induced Helicase, IFIH1 , Mice , RNA, Double-Stranded/metabolism , Receptors, Retinoic Acid/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...