Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 12(6): 697-702, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37191637

ABSTRACT

In the present work, we report a facile approach for the fast fabrication of porous films and coatings of long-chain polyamides through a nonconventional evaporation induced phase separation. Because of its amphiphilic nature, polyamide 12 can be dissolved in the mixture of a high-polarity solvent and a low-polarity solvent, while it could not be dissolved in either solvent solely. The sequential and fast evaporation of the solvents leads to the formation of porous structures within 1 min. Moreover, we have investigated the dependence of the pore structures on composition of the solutions, and have demonstrated that our approach can be applied to other long-chain polycondensates, too. Our findings can provide insight on the fabrication of porous materials by using amphiphilic polymers.

2.
Biopolymers ; 111(3): e23347, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31868924

ABSTRACT

Enzymatic hydrolysis of biomass is an established method for producing biofuels. Lignocellulosic biomass such as corn stover is very inhomogeneous material with big variation on conversion rates between individual particles therefore leading to variable recalcitrance results. In this study, we used noninvasive optical microscopy techniques, such as two-photon microscopy and fluorescence lifetime imaging microscopy, to visualize and analyze morphological and chemical changes of individual corn stover particles pretreated with sulfuric acid during hydrolysis. Morphochemical changes were interpreted based on the fluorescence properties of isolated building blocks of plant cell wall, such as cellulose, hemicellulose, and lignin. Enzymatic hydrolysis resulted in particle size reduction, side wall collapse, decrease of second harmonic signal from cellulose, redshifting of autofluorescence emission, and lifetime decrease attributed to the relative increase of lignin. Based on these observations, tracking compositional change after hydrolysis of individual particles was accomplished. The methodologies developed offer a paradigm for imaging and analyzing enzymatic hydrolysis in vitro and in situ, which could be used for screening enzymes cocktails targeting specific recalcitrant structures or investigating locally enzyme anti-inhibitory agents.


Subject(s)
Biomass , Cellulose/metabolism , Lignin/metabolism , Optical Imaging/methods , Polysaccharides/metabolism , Zea mays/metabolism , Biofuels , Hydrolysis , Microscopy, Fluorescence, Multiphoton/methods , Spectrometry, Fluorescence/methods , Zea mays/enzymology
3.
Microsc Microanal ; 24(5): 517-525, 2018 10.
Article in English | MEDLINE | ID: mdl-30334516

ABSTRACT

Parameters such as pretreatment method, enzyme type and concentration, determine the conversion efficiency of biomass' cellulose and hemicellulose to glucose and mainly xylose in biomass-based fuel production. Chemical quantification of these processes offers no information on the effect of enzymatic hydrolysis (EH) on particle morphology. We report on the development of a microscopy method for imaging pretreated biomass particles at different EH stages. The method was based on acquiring large field of view images, typically 20×10 mm2 containing thousands of particles. Morphology of particles with lengths between 2 µm and 5 mm could be visualized and analyzed. The particle length distribution of corn stover samples, pretreated with increasing amounts of sulfuric acid at different EH stages, was measured. Particle size was shown to be dependent on pretreatment severity and EH time. The methodology developed could offer an alternative method for characterization of EH of biomass for second generation biofuels and visualization of recalcitrant structures.


Subject(s)
Biomass , Cellulose/chemistry , Microscopy/methods , Particle Size , Polysaccharides/chemistry , Biofuels , Cellulose/metabolism , Glucose/metabolism , Hydrolysis , Polysaccharides/metabolism , Sulfuric Acids , Zea mays/chemistry
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 171: 139-143, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27501486

ABSTRACT

In this paper, we gain insight into the design and optimization of plasmonic (metallic) tips prepared with dc-pulsed voltage electrochemical etching gold wires, provided that, a duty cycle is self-tuned. Physically, it means that etching electrolyte attacks the gold wire equally for all pulse lengths, regardless of its surface shape. Etchant effect on the reproducibility of a curvature radius of the tip apex is demonstrated. It means that the gold conical tips can be designed chemically with a choice of proper etchant electrolyte. It is suggested to use a microtomed binary polymer blend consisting of polyamide and low density polyethylene, as a calibration grating, for optimizing and standardizing tip-enhanced Raman scattering performance.

5.
Macromol Rapid Commun ; 33(21): 1882-7, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23059957

ABSTRACT

A series of block copolymers with fixed length of the semiconductor-block poly(3-butylthiophene) (P3BT) and varying length of the insulator-block polystyrene (PS) are synthesized. These copolymers are blended with phenyl-C61-butyric acid methyl ester (PCBM) for the bulk heterojunction photoactive layers. With appropriate insulator-block length and donor-acceptor ratio, the power conversion efficiency increases by one order of magnitude compared with reference devices with pure P3BT/PCBM. PS blocks improve the miscibility of the active layer blends remarkably. The P3BT-b-PS crystallizes as nanorods with the P3BT core covered with the PS-block, which creates a nanoscale tunneling barrier between donor and acceptor leading to more efficient transportation of charge carriers in the semiconductors.


Subject(s)
Electric Power Supplies , Polymers/chemistry , Nanotubes/chemistry , Polymers/chemical synthesis , Semiconductors , Solar Energy
6.
J Am Chem Soc ; 133(23): 9088-94, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21542646

ABSTRACT

Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-Lu(3)N@C(80) (Lu(3)N@C(80)-PCBEH) show an open circuit voltage (V(OC)) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid methyl ester (PC(61)BM). To fully exploit the potential of this acceptor molecule with respect to the power conversion efficiency (PCE) of solar cells, the short circuit current (J(SC)) should be improved to become competitive with the state of the art solar cells. Here, we address factors influencing the J(SC) in blends containing the high voltage absorber Lu(3)N@C(80)-PCBEH in view of both photogeneration but also transport and extraction of charge carriers. We apply optical, charge carrier extraction, morphology, and spin-sensitive techniques. In blends containing Lu(3)N@C(80)-PCBEH, we found 2 times weaker photoluminescence quenching, remainders of interchain excitons, and, most remarkably, triplet excitons formed on the polymer chain, which were absent in the reference P3HT:PC(61)BM blends. We show that electron back transfer to the triplet state along with the lower exciton dissociation yield due to intramolecular charge transfer in Lu(3)N@C(80)-PCBEH are responsible for the reduced photocurrent.

7.
Nanotechnology ; 22(2): 025202, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21135474

ABSTRACT

This paper describes a novel chemical etching method to fabricate high quality near-field optical antennas-tapered metallic tips-from gold wire in a reproducible way for optically probing a specimen on the nanoscale. A new type of an electrochemical cell is introduced and different dc and ac etching regimes are studied in detail. The formation and dynamics of a meniscus around a gold wire immersed in an electrolyte when supplying a square wave voltage are considered. We show that in situ etching current kinetics allows one to improve a yield of tips with a well-defined geometry up to 95% by filtering these on the basis of a cutoff current and a power spectrum of etching current fluctuations. As a quantitative measure for estimating the yield we introduce a probability to find tips with curvature radii falling in the range of interest. Testing the tips for a plasmonic effect is implemented with tip-enhanced Raman spectroscopy and sub-wavelength imaging of a thin fullerene film.

8.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S39-44, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20601352

ABSTRACT

We have utilized bright-field conventional transmission electron microscopy tomography and annular dark-field scanning transmission electron microscopy (ADF-STEM) tomography to characterize a well-defined carbon black (CB)-filled polymer nanocomposite with known CB volume concentration. For both imaging methods, contrast can be generated between the CB and the surrounding polymer matrix. The involved contrast mechanisms, in particular for ADF-STEM, will be discussed in detail. The obtained volume reconstructions were analysed and the CB volume concentrations were carefully determined from the reconstructed data. For both imaging modes, the measured CB volume concentrations are substantially different and only quantification based on the ADF-STEM data revealed about the same value as the known CB loading. Moreover, when applying low-convergence angles for imaging ADF-STEM tomography, data can be obtained of micrometre-thick samples.

9.
Macromol Rapid Commun ; 31(21): 1835-45, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21567602

ABSTRACT

Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.

10.
Nat Mater ; 8(10): 818-24, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19749766

ABSTRACT

The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance.

11.
Microsc Microanal ; 15(3): 251-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19460182

ABSTRACT

Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.

12.
Nano Lett ; 9(2): 507-13, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18642962

ABSTRACT

In this study, the three-dimensional (3D) nanoscale organization in the photoactive layers of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM) is revealed by electron tomography. Morphologies suggested by previous experimental evidence were, for the first time, observed directly with a nanometer resolution and studied in detail. After annealing treatment, either at elevated temperature or during slow solvent evaporation, genuine 3D nanoscale networks are formed with high crystalline order and favorable concentration gradients of both P3HT and PCBM through the thickness of the photoactive layer. These favorable morphological changes account for a considerable increase of the power conversion efficiency in corresponding solar cell devices.

13.
Adv Mater ; 21(48): 4915-4919, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-25377493

ABSTRACT

The conductivity behavior of MWCNT networks within the volume of polymer nanocomposite samples is analyzed with nanometer resolution in all three dimensions. It is demonstrated that close to but above the percolation threshold for electrical conduction most of the MWCNTs do not contribute to the conductive network within the nanocomposite.

14.
J Am Chem Soc ; 130(24): 7721-35, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18494472

ABSTRACT

The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all concentrations, a charge transfer (CT) transition is observed with absorption spectroscopy, photoluminescence, and electroluminescence. The CT emission is used as a probe to investigate the dissociation of CT excited states at the donor-acceptor interface in photovoltaic devices, as a function of an applied external electric field and PCBM concentration. We find that the maximum of the CT emission shifts to lower energy and decreases in intensity with higher PCBM content. We explain the red shift of the emission and the lowering of the open-circuit voltage (V(OC)) of photovoltaic devices prepared from these blends with the higher relative permittivity of PCBM (epsilon(r) = 4.0) compared to that of the polymer (epsilon(r) = 3.4), stabilizing the energy (E(CT)) of CT states and of the free charge carriers in blends with higher PCBM concentration. We show that the CT state has a short decay time (tau = ca. 4 ns) that is reduced by the application of an external electric field or with increasing PCBM content. The field-induced quenching can be explained quantitatively with the Onsager-Braun model for the dissociation of the CT states when including a high electron mobility in nanocrystalline PCBM clusters. Furthermore, photoinduced absorption spectroscopy shows that increasing the PCBM concentration reduces the yield of neutral triplet excitons forming via electron-hole recombination, and increases the lifetime of radical cations. The presence of nanocrystalline domains with high local carrier mobility of at least one of the two components in an organic heterojunction may explain efficient dissociation of CT states into free charge carriers.

16.
J Phys Chem B ; 110(26): 13029-36, 2006 Jul 06.
Article in English | MEDLINE | ID: mdl-16805610

ABSTRACT

Fabrication of single-walled carbon nanotube (SWNT) networks using evaporation of SDS-SWNT sessile drops on a hydrophobized silicon substrate is reported. It is suggested that the organization of nanotubes during evaporation is controlled by aggregates (in the SDS-SWNT dispersion) and hydrophobicity of the substrate. On hydrophobic substrates, the evaporation of SDS-SWNT sessile drops proceeds through constant contact area. On hydrophilic substrates, nanotube aggregates in SDS-SWNT dispersion stop the contact line from moving, resulting in the formation of "coffee-stains". The (partial) removal of aggregates by centrifugation is essential for a freely moving contact line leading to the organization of nanotubes into a network of homogeneously distributed nanotubes on the most hydrophobic substrate. The evaporation of sessile drops was characterized by microscopic, spectroscopic, and topographical techniques.

17.
J Am Chem Soc ; 127(42): 14530-1, 2005 Oct 26.
Article in English | MEDLINE | ID: mdl-16231879

ABSTRACT

Tetrahedral naphthalenediimide compound 1 has been synthesized as an example of a new class of amorphous n-type materials, in which the nondirectionality obtained by its shape is decoupled from its optoelectronic properties. 1 forms bicontinuous films with p-type polymers and effectively quenches the excited state, yielding long-lived mobile charge carriers on pulsed illumination.


Subject(s)
Membranes, Artificial , Polymers/chemistry , Molecular Structure , Optics and Photonics , Particle Size , Time Factors
18.
Anal Chem ; 77(16): 5135-9, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16097750

ABSTRACT

In this paper we demonstrate that the sonication-driven exfoliation of aggregates and bundles of single-wall carbon nanotubes (SWNTs) in an aqueous surfactant solution can be easily monitored by UV-vis spectroscopy. The different stages of the exfoliation process were directly visualized by cryogenic temperature transmission electron microscopy, showing an excellent correspondence with the spectroscopic data: the maximum achievable exfoliation (which does not mean that 100% of the NTs are effectively exfoliated) corresponds to the maximum UV-vis absorbance of the NT solution. Moreover, it has been observed that NTs produced by the arc-discharge technology (Carbolex NTs) require less energy to achieve maximum exfoliation than NTs produced by chemical vapor deposition (HiPCO NTs). This difference is attributed to weaker van der Waals attraction between Carbolex NTs in the bundles and aggregates.

19.
Ultramicroscopy ; 104(2): 160-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15885910

ABSTRACT

The morphology of conductive nanocomposites consisting of low concentration of single-wall carbon nanotubes (SWNT) and polystyrene (PS) has been studied using atomic force microscopy (AFM), transmission electron microscopy (TEM) and, in particular, scanning electron microscopy (SEM). Application of charge contrast imaging in SEM allows visualization of the overall SWNT dispersion within the polymer matrix as well as the identification of individual or bundled SWNTs at high resolution. The contrast mechanism involved will be discussed. In conductive nanocomposites the SWNTs are homogeneously dispersed within the polymer matrix and form a network. Beside fairly straight SWNTs, strongly bended SWNTs have been observed. However, for samples with SWNT concentrations below the percolation threshold, the common overall charging behavior of an insulating material is observed preventing the detailed morphological investigation of the sample.

20.
Nano Lett ; 5(4): 579-83, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15826090

ABSTRACT

Transmission electron microscopy and electron diffraction are used to study the changes in morphology of composite films of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM) in bulk heterojunction solar cells. Thermal annealing produces and stabilizes a nanoscale interpenetrating network with crystalline order for both components. P3HT forms long, thin conducting nanowires in a rather homogeneous, nanocrystalline PCBM film. Both the improved crystalline nature of films and increased but controlled demixing between the two constitutes therein after annealing explains the considerable increase of the power conversion efficiency observed in these devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...