Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19109, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580353

ABSTRACT

Understanding the Earth's climate system during past periods of high atmospheric CO2 is crucial for forecasting climate change under anthropogenically-elevated CO2. The Mesozoic Era is believed to have coincided with a long-term Greenhouse climate, and many of our temperature reconstructions come from stable isotopes of marine biotic calcite, in particular from belemnites, an extinct group of molluscs with carbonate hard-parts. Yet, temperatures reconstructed from the oxygen isotope composition of belemnites are consistently colder than those derived from other temperature proxies, leading to large uncertainties around Mesozoic sea temperatures. Here we apply clumped isotope palaeothermometry to two distinct carbonate phases from exceptionally well-preserved belemnites in order to constrain their living habitat, and improve temperature reconstructions based on stable oxygen isotopes. We show that belemnites precipitated both aragonite and calcite in warm, open ocean surface waters, and demonstrate how previous low estimates of belemnite calcification temperatures has led to widespread underestimation of Mesozoic sea temperatures by ca. 12 °C, raising estimates of some of the lowest temperature estimates for the Jurassic period to values which approach modern mid-latitude sea surface temperatures. Our findings enable accurate recalculation of global Mesozoic belemnite temperatures, and will thus improve our understanding of Greenhouse climate dynamics.

2.
Paleoceanogr Paleoclimatol ; 34(1): 63-78, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30854509

ABSTRACT

This study identifies temporal biases in the radiocarbon ages of the planktonic foraminifera species Globigerina bulloides and Globigerinoides ruber (white) in a sediment core from the SW Iberian margin (so-called Shackleton site). Leaching of the outer shell and measurement of the radiocarbon content of both the leachate and leached sample enabled us to identify surface contamination of the tests and its impact on their 14C ages. Incorporation of younger radiocarbon on the outer shell affected both species and had a larger impact downcore. Interspecies comparison of the 14C ages of the leached samples reveal systematic offsets with 14C ages for G. ruber being younger than G. bulloides ages during the last deglaciation and part of the Early and mid-Holocene. The greatest offsets (up to 1,030 years) were found during Heinrich Stadial 1, the Younger Dryas, and part of the Holocene. The potential factors differentially affecting these two planktonic species were assessed by complementary 14C, oxygen and carbon isotopes, and species abundance determinations. The coupled effect of bioturbation with changes in the abundance of G. ruber is invoked to account for the large age offsets. Our results highlight that 14C ages of planktonic foraminifera might be largely compromised even in settings characterized by high sediment accumulation rates. Thus, a careful assessment of potential temporal biases must be performed prior to using 14C ages for paleoclimate investigations or radiocarbon calibrations (e.g., marine calibration curve Marine13, Reimer et al., 2013, https://doi.org/10.2458/azu_js_rc.55.16947).

SELECTION OF CITATIONS
SEARCH DETAIL
...