Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Precis Oncol ; 8(1): 93, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653773

ABSTRACT

Anal squamous cell carcinoma (ASCC) is associated with immunosuppression and infection with human papillomavirus (HPV). Response to standard chemoradiotherapy (CRT) varies considerably. A comprehensive molecular characterization of CRT resistance is lacking, and little is known about the interplay between tumor immune contexture, host immunity, and immunosuppressive and/or immune activating effects of CRT. Patients with localized ASCC, treated with CRT at three different sites of the German Cancer Consortium (DKTK) were included. Patient cohorts for molecular analysis included baseline formalin fixed paraffin embedded biopsies for immunohistochemistry (n = 130), baseline RNA sequencing (n = 98), peripheral blood immune profiling (n = 47), and serum cytokine measurement (n = 35). Gene set enrichment analysis showed that pathways for IFNγ, IFNα, inflammatory response, TNFα signaling via NF-κB, and EMT were significantly enriched in poor responders (all p < 0.001). Expression of interferon-induced transmembrane protein 1 (IFITM1), both on mRNA and protein levels, was associated with reduced Freedom from locoregional failure (FFLF, p = 0.037) and freedom from distant metastasis (FFDM, p = 0.014). An increase of PD-L1 expression on CD4+ T-cells (p < 0.001) and an increase in HLA-DR expression on T-cells (p < 0.001) was observed in the peripheral blood after CRT. Elevated levels of regulatory T-cells and CXCL2 were associated with reduced FFLF (p = 0.0044 and p = 0.004, respectively). Inflammatory pathways in tissue in line with elevated levels of regulatory T-cells and CXCL2 in peripheral blood are associated with resistance to CRT. To counteract this resistance mechanism, the RADIANCE randomized phase-2 trial currently tests the addition of the immune checkpoint inhibitor durvalumab to standard CRT in locally advanced ASCC.

2.
Nat Commun ; 10(1): 1448, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30923344

ABSTRACT

The original version of this Article omitted the following from the Acknowledgements: 'This project was supported by CRC128/Project A03 of the Deutsche Forschungsgemeinschaft (DFG).'This has not been corrected in either the PDF or HTML versions.

3.
Nat Commun ; 8: 15700, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28621310

ABSTRACT

G-protein-coupled receptor (GPCR) expression is extensively studied in bulk cDNA, but heterogeneity and functional patterning of GPCR expression in individual vascular cells is poorly understood. Here, we perform a microfluidic-based single-cell GPCR expression analysis in primary smooth muscle cells (SMC) and endothelial cells (EC). GPCR expression is highly heterogeneous in all cell types, which is confirmed in reporter mice, on the protein level and in human cells. Inflammatory activation in murine models of sepsis or atherosclerosis results in characteristic changes in the GPCR repertoire, and we identify functionally relevant subgroups of cells that are characterized by specific GPCR patterns. We further show that dedifferentiating SMC upregulate GPCRs such as Gpr39, Gprc5b, Gprc5c or Gpr124, and that selective targeting of Gprc5b modulates their differentiation state. Taken together, single-cell profiling identifies receptors expressed on pathologically relevant subpopulations and provides a basis for the development of new therapeutic strategies in vascular diseases.


Subject(s)
Cell Differentiation , Inflammation , Myocytes, Smooth Muscle/cytology , Receptors, G-Protein-Coupled/metabolism , Animals , Aorta/pathology , Atherosclerosis/metabolism , Cluster Analysis , Exons , Green Fluorescent Proteins/metabolism , Humans , Ligands , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Sepsis/metabolism , Sepsis/physiopathology , Single-Cell Analysis , Tissue Array Analysis
4.
Acta Physiol (Oxf) ; 218(1): 13-27, 2016 09.
Article in English | MEDLINE | ID: mdl-27124368

ABSTRACT

AIM: Platelet-activating factor acetyl hydrolase 1B1 (PAFAH1B1, also known as Lis1) is a protein essentially involved in neurogenesis and mostly studied in the nervous system. As we observed a significant expression of PAFAH1B1 in the vascular system, we hypothesized that PAFAH1B1 is important during angiogenesis of endothelial cells as well as in human vascular diseases. METHOD: The functional relevance of the protein in endothelial cell angiogenic function, its downstream targets and the influence of NONHSAT073641, a long non-coding RNA (lncRNA) with 92% similarity to PAFAH1B1, were studied by knockdown and overexpression in human umbilical vein endothelial cells (HUVEC). RESULTS: Knockdown of PAFAH1B1 led to impaired tube formation of HUVEC and decreased sprouting in the spheroid assay. Accordingly, the overexpression of PAFAH1B1 increased tube number, sprout length and sprout number. LncRNA NONHSAT073641 behaved similarly. Microarray analysis after PAFAH1B1 knockdown and its overexpression indicated that the protein maintains Matrix Gla Protein (MGP) expression. Chromatin immunoprecipitation experiments revealed that PAFAH1B1 is required for active histone marks and proper binding of RNA Polymerase II to the transcriptional start site of MGP. MGP itself was required for endothelial angiogenic capacity and knockdown of both, PAFAH1B1 and MGP, reduced migration. In vascular samples of patients with chronic thromboembolic pulmonary hypertension (CTEPH), PAFAH1B1 and MGP were upregulated. The function of PAFAH1B1 required the presence of the intact protein as overexpression of NONHSAT073641, which was highly upregulated during CTEPH, did not affect PAFAH1B1 target genes. CONCLUSION: PAFAH1B1 and NONHSAT073641 are important for endothelial angiogenic function.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/physiology , Microtubule-Associated Proteins/physiology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Cells, Cultured , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix Proteins/genetics , Female , Gene Knockdown Techniques , Histones/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Hydroxyeicosatetraenoic Acids/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Microtubule-Associated Proteins/genetics , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , RNA Polymerase II/metabolism , RNA, Long Noncoding/physiology , Thromboembolism/complications , Thromboembolism/metabolism , Wound Healing , Matrix Gla Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...