Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Pharmacol ; 10: 715, 2019.
Article in English | MEDLINE | ID: mdl-31417401

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-ß (TGF-ß)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit ß-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/ß-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.

2.
Front Physiol ; 10: 630, 2019.
Article in English | MEDLINE | ID: mdl-31191339

ABSTRACT

Background: Appetite disorders are frequent and scantly studied in peritoneal dialysis (PD) patients and are associated with malnutrition and cardiovascular complications. Objective: We investigated the relationship between uremic insulin resistance, pro-inflammatory cytokines, and appetite-related peptides release (ARPr) with eating-behavior disorders in PD patients. Methods: We included 42 PD patients (12 suffering anorexia, 12 obese with high food-intake, and 18 asymptomatic) and 10 controls. We measured blood levels of ARPr including orexigens [neuropeptide-Y (NPY), ghrelin, and nitric-oxide], anorexigens [cholecystokinin, insulin, corticotropin-releasing factor, leptin, and adiponectin (Ad)], and cytokines (TNF-α, sTNFα-R2, and IL-6) both at baseline and after administering a standard-food stimulus (SFS). We also measured the expression of TNF-α, leptin and Ad-encoding mRNAs in abdominal adipose tissue. We compared these markers with eating motivation measured by a Visual Analog Scale (VAS). Results: Anorexics showed both little appetite, measured by a VAS, and low levels of orexigens that remained constant after SFS, coupled with high levels of anorexigens at baseline and after SFS. Obeses showed higher appetite, increased baseline levels of orexigens, lower baseline levels of anorexigens and cytokines and two peaks of NPY after SFS. The different patterns of ARPr and cytokines pointed to a close relationship with uremic insulin resistance. In fact, the euglycemic-hyperglycemic clamp reproduced these disorders. In anorexics, TNF-α fat expression was increased. In obese patients, leptin expression in fat tissue was down-regulated and showed correlation with the appetite. Conclusion: In PD, appetite is governed by substances that are altered at baseline and abnormally released. Such modulators are controlled by insulin metabolism and cytokines and, while anorexics display inflammatory predominance, obese patients predominantly display insulin resistance.

SELECTION OF CITATIONS
SEARCH DETAIL