Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 291: 110361, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31928670

ABSTRACT

Light modulates almost every aspect of plant physiology, including plant-pathogen interactions. Among these, the hypersensitive response (HR) of plants to pathogens is characterized by a rapid and localized programmed cell death (PCD), which is critical to restrict the spread of pathogens from the infection site. The aim of this work was to study the role of light in the interaction between Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and non-host tobacco plants. To this end, we examined the HR under different light treatments (white and red light) by using a range of well-established markers of PCD. The alterations found at the cellular level included: i) loss of membrane integrity and nuclei, ii) RuBisCo and DNA degradation, and iii) changes in nuclease profiles and accumulation of cysteine proteinases. Our results suggest that red light plays a role during the HR of tobacco plants to Pto DC3000 infection, delaying the PCD process.


Subject(s)
Apoptosis/radiation effects , Host-Pathogen Interactions/radiation effects , Light , Nicotiana/physiology , Pseudomonas syringae/physiology , Plant Diseases/microbiology , Nicotiana/microbiology , Nicotiana/radiation effects
2.
Front Plant Sci ; 9: 1275, 2018.
Article in English | MEDLINE | ID: mdl-30214454

ABSTRACT

The megagametophyte of mature seeds of Araucaria angustifolia consists of cells with thin walls, one or more nuclei, a central vacuole storing proteins, and a cytoplasm rich in amyloplasts, mitochondria and lipid bodies. In this study, we describe the process of mobilization of reserves and analyzed the dismantling of the tissue during germination, using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and amyloplasts, DNA degradation, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrate that DNA fragmentation in nuclei occurs at early stages of germination, which correlates with induction of specific nucleases. The results of the present study add knowledge on the dismantling of the megagametophyte of genus Araucaria, a storage tissue that stores starch as the main reserve substance, as well as on the PCD pathway, by revealing new insights into the role of nucleases and the expression patterns of putative nuclease genes during germination.

3.
Front Plant Sci ; 5: 546, 2014.
Article in English | MEDLINE | ID: mdl-25360139

ABSTRACT

Quinoa seeds are highly nutritious due to the quality of their proteins and lipids and the wide range of minerals and vitamins they store. Three compartments can be distinguished within the mature seed: embryo, endosperm, and perisperm. The distribution of main storage reserves is clearly different in those areas: the embryo and endosperm store proteins, lipids, and minerals, and the perisperm stores starch. Tissues equivalent (but not homologous) to those found in grasses can be identified in quinoa, suggesting the effectiveness of this seed reserve distribution strategy; as in cells of grass starchy endosperm, the cells of the quinoa perisperm endoreduplicate, increase in size, synthesize starch, and die during development. In addition, both systems present an extra-embryonic tissue that stores proteins, lipids and minerals: in gramineae, the aleurone layer(s) of the endosperm; in quinoa, the micropylar endosperm; in both cases, the tissues are living. Moreover, the quinoa micropylar endosperm and the coleorhiza in grasses play similar roles, protecting the root in the quiescent seed and controlling dormancy during germination. This investigation is just the beginning of a broader and comparative study of the development of quinoa and grass seeds. Several questions arise from this study, such as: how are synthesis and activation of seed proteins and enzymes regulated during development and germination, what are the genes involved in these processes, and lastly, what is the genetic foundation justifying the analogy to grasses.

4.
PLoS One ; 7(8): e41008, 2012.
Article in English | MEDLINE | ID: mdl-22899993

ABSTRACT

The ASR (for ABA/water stress/ripening) protein family, first described in tomato as nuclear and involved in adaptation to dry climates, is widespread in the plant kingdom, including crops of high agronomic relevance. We show both nuclear and cytosolic localization for ASR1 (the most studied member of the family) in histological plant samples by immunodetection, typically found in small proteins readily diffusing through nuclear pores. Indeed, a nuclear localization was expected based on sorting prediction software, which also highlight a monopartite nuclear localization signal (NLS) in the primary sequence. However, here we prove that such an "NLS" of ASR1 from tomato is dispensable and non-functional, being the transport of the protein to the nucleus due to simple diffusion across nuclear pores. We attribute such a targeting deficiency to the misplacing in that cryptic NLS of two conserved contiguous lysine residues. Based on previous in vitro experiments regarding quaternary structure, we also carried out live cell imaging assays through confocal microscopy to explore dimer formation in planta. We found homodimers in both the cytosol and the nucleus and demonstrated that assembly of both subunits together can occur in the cytosol, giving rise to translocation of preformed dimers. The presence of dimers was further corroborated by means of in vivo crosslinking of nuclei followed by SDS-PAGE.


Subject(s)
Cell Nucleus/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Active Transport, Cell Nucleus , Cytosol/metabolism , Dehydration/genetics , Dehydration/metabolism , Solanum lycopersicum/genetics , Nuclear Localization Signals , Plant Proteins/genetics , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...