Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 10(8): 1074-1079, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28009134

ABSTRACT

In this study we identify and classify high and low levels of glycated hemoglobin (HbA1c) in healthy volunteers (HV) and diabetic patients (DP). Overall, 86 subjects were evaluated. The Raman spectrum was measured in three anatomical regions of the body: index fingertip, right ear lobe, and forehead. The measurements were performed to compare the difference between the HV and DP (22 well controlled diabetic patients (WCDP) (HbA1c <6.5%), and 49 not controlled diabetic patients (NCDP) (HbA1c ≥6.5%)). Multivariable methods such as principal components analysis (PCA) combined with support vector machine (SVM) were used to develop effective diagnostic algorithms for classification among these groups. The forehead of HV versus WCDP showed the highest sensitivity (100%) and specificity (100%). Sensitivity (100%) and specificity (60%), were highest in the forehead of WCDP, versus NCDP. In HV versus NCDP, the fingertip had the highest sensitivity (100%) and specificity (80%). The efficacy of the diagnostic algorithm by receiver operating characteristic (ROC) curve was confirmed. Overall, our study demonstrated that the combination of Raman spectroscopy and PCA-SVM are feasible non-invasive diagnostic tool in diabetes to classify qualitatively high and low levels of HbA1c in vivo.


Subject(s)
Glycated Hemoglobin/analysis , Spectrum Analysis, Raman , Support Vector Machine , Algorithms , Case-Control Studies , Diabetes Mellitus/blood , Humans , Principal Component Analysis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...