Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Chem ; 17(2): 134-145, 2021.
Article in English | MEDLINE | ID: mdl-31939731

ABSTRACT

BACKGROUND: Triterpenoids exhibit a wide spectrum of antimicrobial activity. OBJECTIVE: The objective of this study was to synthesize a series of nitrogen derivatives based on lupane, oleanane, and ursane triterpenoids with high antitubercular activity. METHODS: Isonicotinoylhydrazones were prepared via the reaction of 3-oxotriterpenic acids or betulonic aldehyde with isoniazid (INH) in yields of 54-72%. N-Acylation of betulonic or azepanobetulinic acids led to lupane C28 hydrazides and dihydrazides. The derivatives were evaluated for their in vitro antimycobacterial activities against Mycobacterium tuberculosis (MTB) H37RV and single-drug resistance (SDR)-TB in the National Institute of Allergy and Infectious Diseases, USA. Molecular docking was performed to evaluate the possible binding modes of investigated compounds in the active site of Diterpene synthase (Rv3378c). RESULTS: The obtained compounds are represented by C3 or C28 conjugates with hydrazine hydrate or INH. Some compounds demonstrated from high minimum inhibitory concentration (MIC ≤ 10 µg/mL) to excellent (MICs from 0.19 to 1.25 µg/mL) activity against MTB H37RV. Two lupane conjugates with INH were the leading compounds against MTB H37RV and some SDR-strains with MICs ranged from 0.19 to 1.70 µg/mL. Molecular docking of active compounds to diterpene synthase showed that these moieties accommodate the active site of the enzyme. CONCLUSION: It was revealed that the conjugation of lupanes with INH at C3 is more effective than at C28 and the lupane skeleton is preferable among oleanane and ursane types. The replacement of native hexacarbocyclic A ring to seven-member azepane ring is favorably for inhibition of both MTB H37RV and SDR-strains. These data could possibly mean that the antitubercular activity against INH-resistant strains (INH-R) came from both triterpenoid and isoniazid parts of the hybrid molecules. Azepanobetulin showed the highest activity against both INH-R strains in comparison with other triterpenoids and INH. Thus, the introduction of hydrazone, hydrazide (dihydrazide), or azepane moieties into the triterpenoid core is a promising way for the development of new anti-tubercular agents.


Subject(s)
Antitubercular Agents/chemical synthesis , Hydrazones/chemistry , Mycobacterium tuberculosis/drug effects , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Isoniazid/chemistry , Isoniazid/pharmacology , Molecular Structure , Rifampin/chemistry , Rifampin/pharmacology , Triterpenes/chemistry
2.
Eur J Med Chem ; 143: 464-472, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29202408

ABSTRACT

A series of A-ring azepanones and azepanes derived from betulonic, oleanonic and ursonic acids was synthesized and evaluated for their in vitro antimycobacterial activities against M. tuberculosis (MTB) H37Rv and SDR-TB in the National Institute of Allergy and Infectious Diseases. Triterpenic A-azepano-28-hydroxy-derivatives were synthesized by the reduction with LiAlH4 of triterpenic azepanones available from the Beckmann rearrangement of the corresponding C3-oximes. Modification of azepanes at NH-group and atoms С12, C20, C28 and C29 of triterpenic core led to the derivatives with oxo, epoxy, aminopropyl, oximino and acyl substituents. The primary assay of tested triterpenoids against MTB H37Rv demonstrated their MIC values ranged from 3.125 to >200 µM. Ursane type A-azepano-28-cinnamoates were the most active being 2 and 4 times more efficient than the initial 28-hydroxy-derivative. The follow-up testing revealed A-azepano-28-cinnamoyloxybetulin as a leader compound with MIC 2 and MBC 4 µM against MTB H37Rv and MICs 4, 1 and 1 µM against INH, RIF and OFX resistant strains, respectively. Five oleanane and ursane azepanes pronounced better activity than isoniazid against INH-R1 and rifampicin against INH-R2 strains. This work opens a new direction in the design and synthesis of new antitubercular agents basing on azepanotriterpenoids.


Subject(s)
Antitubercular Agents/pharmacology , Azepines/pharmacology , Mycobacterium tuberculosis/drug effects , Triterpenes/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Azepines/chemical synthesis , Azepines/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...