Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796649

ABSTRACT

A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes' efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.


Subject(s)
Biomass , Ionic Liquids/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Solvents/chemistry , Solubility
2.
ChemSusChem ; 8(6): 947-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25703380

ABSTRACT

The use of ionic liquids (ILs) for biomass processing has attracted considerable attention recently as it provides distinct features for pre-treated biomass and fractionated materials in comparison to conventional processes. Process intensification through integration of dissolution, fractionation, hydrolysis and/or conversion in one pot should be accomplished to maximise economic and technological feasibility. The possibility of using alternative ILs capable not only of dissolving and deconstructing selectively biomass but also of catalysing reactions simultaneously are a potential solution of this problem. In this Review a critical overview of the state of the art and perspectives of the hydrolysis and conversion of cellulose and lignocellulosic biomass using acidic ILs using no additional catalyst are provided. The efficiency of the process is mainly considered with regard to the hydrolysis and conversion yields obtained and the selectivity of each reaction. The process conditions can be easily tuned to obtain sugars and/or platform chemicals, such as furans and organic acids. On the other hand, product recovery from the IL and its purity are the main challenges for the acceptance of this technology as a feasible alternative to conventional processes.


Subject(s)
Biomass , Green Chemistry Technology/methods , Ionic Liquids/chemistry , Lignin/chemistry , Catalysis , Hydrogen-Ion Concentration
3.
J Agric Food Chem ; 61(33): 7874-82, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23876219

ABSTRACT

Pretreatment of lignocellulosic biomass with ionic liquids (ILs) is a promising and challenging process for an alternative method of biomass processing. The present work emphasizes the examination of wheat straw pretreatment using ILs, namely, 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]), and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [bmim][HSO4] was found to achieve a macroscopic complete dissolution of wheat straw during pretreatment. The fractionation process demonstrated to be dependent on the IL used. Using [bmim][SCN], a high-purity lignin-rich material was obtained. In contrast, [bmim][N(CN)2] was a good solvent to produce high-purity carbohydrate-rich fractions. When [bmim][HSO4] was used, a different behavior was observed, exhibiting similarities to an acid hydrolysis pretreatment, and no hemicellulose-rich material was recovered during fractionation. A capillary electrophoresis (CE) technique allowed for a better understanding of this phenomenon. Hydrolysis of carbohydrates was confirmed, although an extended degradation of monosaccharides to furfural and hydroxymethylfurfural (HMF) was observed.


Subject(s)
Plant Stems/chemistry , Triticum/chemistry , Cellulose/chemistry , Chemical Fractionation , Hydrolysis , Ionic Liquids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...