Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
An. acad. bras. ciênc ; 89(3): 1443-1463, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-886751

ABSTRACT

ABSTRACT Paleocene ostracods and planktonic foraminifera from the Maria Farinha Formation, Paraíba Basin, are herein presented. Eleven ostracod species were identified in the genera Cytherella Jones, Cytherelloidea Alexander, Eocytheropteron Alexander, Semicytherura Wagner, Paracosta Siddiqui, Buntonia Howe, Soudanella Apostolescu, Leguminocythereis Howe and, probably, Pataviella Liebau. The planktonic foraminifera are represented by the genera Guembelitria Cushman, Parvularugoglobigerina Hofker, Woodringina Loeblich and Tappan, Heterohelix Ehrenberg, Zeauvigerina Finlay, Muricohedbergella Huber and Leckie, and Praemurica Olsson, Hemleben, Berggren and Liu. The ostracods and foraminifera analyzed indicate an inner shelf paleoenvironment for the studied section. Blooms of Guembelitria spp., which indicate either shallow environments or upwelling zones, were also recorded reinforcing previous paleoenvironmental interpretations based on other fossil groups for this basin.


Subject(s)
Animals , Crustacea/classification , Foraminifera/classification , Brazil , Microscopy, Electron, Scanning , Crustacea/ultrastructure , Foraminifera/ultrastructure , Fossils/ultrastructure
2.
An Acad Bras Cienc ; 89(3): 1443-1463, 2017.
Article in English | MEDLINE | ID: mdl-28793007

ABSTRACT

Paleocene ostracods and planktonic foraminifera from the Maria Farinha Formation, Paraíba Basin, are herein presented. Eleven ostracod species were identified in the genera Cytherella Jones, Cytherelloidea Alexander, Eocytheropteron Alexander, Semicytherura Wagner, Paracosta Siddiqui, Buntonia Howe, Soudanella Apostolescu, Leguminocythereis Howe and, probably, Pataviella Liebau. The planktonic foraminifera are represented by the genera Guembelitria Cushman, Parvularugoglobigerina Hofker, Woodringina Loeblich and Tappan, Heterohelix Ehrenberg, Zeauvigerina Finlay, Muricohedbergella Huber and Leckie, and Praemurica Olsson, Hemleben, Berggren and Liu. The ostracods and foraminifera analyzed indicate an inner shelf paleoenvironment for the studied section. Blooms of Guembelitria spp., which indicate either shallow environments or upwelling zones, were also recorded reinforcing previous paleoenvironmental interpretations based on other fossil groups for this basin.


Subject(s)
Crustacea/classification , Foraminifera/classification , Animals , Brazil , Crustacea/ultrastructure , Foraminifera/ultrastructure , Fossils/ultrastructure , Microscopy, Electron, Scanning
3.
Otolaryngol Head Neck Surg ; 142(2): 218-24, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20115978

ABSTRACT

OBJECTIVE: The localization of upper airway obstruction in patients with obstructive sleep apnea (OSA) may optimize treatment. Nasoendoscopy during propofol sedation allows such an evaluation, but the effect of this drug on respiratory patterns and muscle relaxation is unknown. The objective of the present study was to determine through polysomnography whether propofol would change sleep parameters. STUDY DESIGN: Prospective study of subjects submitted to polysomnography under sedation with propofol. SETTING: Tertiary referral center. SUBJECTS AND METHODS: Fifteen non-obese subjects (4 controls/11 OSA patients) were submitted to two diurnal polysomnograms (90-120 minutes of sleep), with and without the use of propofol. The parameters presence of snoring, apnea-hypopnea index (AHI), oxygen desaturation, and sleep architecture were compared. RESULTS: The use of propofol did not induce snoring in the control subjects, whereas 100 percent of the OSA patients snored. AHI and mean oxygen saturation (SaO(2)) did not differ significantly between examinations with and without sedation. However, minimum SaO(2) differed significantly (P < 0.05) with sedation, being lower during propofol sedation. Propofol also significantly changed the sleep architecture, with a significant increase in N3 sleep (P < 0.005) and total abolishment of rapid eye movement sleep (P < 0.0005) during propofol sedation. CONCLUSIONS: These preliminary results allow us to infer that sedation with propofol changes sleep architecture but permits respiratory evaluation, because the main respiratory parameters evaluated in OSA are maintained. These preliminary results support the view that nasoendoscopy under propofol sedation is a promising examination for management of this disease.


Subject(s)
Hypnotics and Sedatives/therapeutic use , Polysomnography , Propofol/therapeutic use , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/physiopathology , Adult , Body Mass Index , Case-Control Studies , Female , Hospitals, University , Humans , Hypnotics and Sedatives/administration & dosage , Laryngoscopy/methods , Male , Middle Aged , Oxygen/analysis , Propofol/administration & dosage , Prospective Studies , Severity of Illness Index , Sleep Apnea, Obstructive/therapy , Snoring/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...