Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genetica ; 141(4-6): 195-203, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23609938

ABSTRACT

The present study inferred the genetic mating system in a natural breeding population of the Jabiru Stork (Jabiru mycteria), a Neotropical wading bird considered endangered in part of its distribution range. Based on data from eight microsatellite loci, maximum-likelihood kinship reconstruction techniques, parentage assignment analyses and effective population size (Ne) estimates were applied to samples collected in the Brazilian Pantanal wetland (N = 45 nestlings from 20 nests; N = 17 shed adult feathers from 11 nests). The relationship diagnosis was determined for most of the complete clutches (86.66 %): 92.31 % were full siblings and 7.69 % were half siblings. Shed feathers collected from the nests matched the genetic parents of the offspring in 80 % of cases. Feathers collected from the ground below the nests were compatible with the putative parents in 41.67 % of cases. A mean Ne of 35 reproductive individuals was inferred, corresponding to an Ne/Nc ratio of 0.09, which is similar to the ratio found in populations of a number of different wild animals. The higher proportion of full siblings identified in the broods suggests that genetic monogamy is the prevalent mating system in the Jabiru Stork, while the detection of half siblings suggests some degree of extra-pair paternity. The present findings are in agreement with previous ecological observations of social monogamy in this species, despite the isolated evidence of extra-pair copulation events. This study also demonstrates the usefulness of a noninvasive approach to sampling adults and performing parentage and relatedness analyses in an elusive, threatened species.


Subject(s)
Birds/genetics , Breeding , Endangered Species , Sexual Behavior, Animal , Animals , Family , Female , Genetic Variation , Genetics, Population , Male , Microsatellite Repeats , Population Density
2.
Conserv Biol ; 20(6): 1584-94, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17181793

ABSTRACT

The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.


Subject(s)
Classification , Conservation of Natural Resources/legislation & jurisprudence , Ecosystem , Animals , Conservation of Natural Resources/methods , Extinction, Biological , Government Regulation , Phylogeny , Species Specificity , United States
3.
Biochem Genet ; 40(3-4): 87-99, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12017510

ABSTRACT

The Wood Stork (Mycteria americana) is a colonial wading bird of the tropical and lower subtropical zones. We assessed genetic structure within and among five stork colonies from the Brazilian Pantanal and compared our data with those from North American populations. Samples of 234 individuals were studied using protein electrophoresis to evaluate genetic variability and interpopulation differentiation. Of 22 loci examined, 7 were polymorphic (mean heterozygosity = 0.068). The low Fst value (0.005) indicated little intraspecific variation among breeding colonies. Estimated number of migrants per generation based on private alleles (Nm = 11.3) and on Fst (48.8) suggests high gene flow Nei's genetic distance values among Pantanal colonies ranged from 0.0001 to 0.0034, demonstrating low genetic divergence among populations. Our data can be explained by supposing high gene flow levels among Pantanal colonies, and between North and South American populations, intermediated by a probable interbreeding population in Central America.


Subject(s)
Birds/genetics , Genetic Variation , Alleles , Animals , Birds/classification , Brazil , Gene Frequency , Isoenzymes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...