Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 31: 9636897221085883, 2022.
Article in English | MEDLINE | ID: mdl-35343271

ABSTRACT

Acute kidney injury due to ischemia followed by reperfusion (IR) is a severe clinical condition with high death rates. IR affects the proximal tubule segments due to their predominantly oxidative metabolism and profoundly altered mitochondrial functions. We previously described the impact of IR on oxygen consumption, the generation of membrane potential (ΔΨ), and formation of reactive oxygen species, together with inflammatory and structural alterations. We also demonstrated the benefits of bone marrow mononuclear cells (BMMC) administration in these alterations. The objective of the present study has been to investigate the effect of IR and the influence of BMMC on the mechanisms of Ca2+ handling in mitochondria of the proximal tubule cells. IR inhibited the rapid accumulation of Ca2+ (Ca2+ green fluorescence assays) and induced the opening of the cyclosporine A-sensitive permeability transition pore (PTP), alterations prevented by BMMC. IR accelerated Ca2+-induced decrease of ΔΨ (Safranin O fluorescence assays), as evidenced by decreased requirement for Ca2+ load and t1/2 for complete depolarization. Addition of BMMC and ADP recovered the normal depolarization profile, suggesting that stabilization of the adenine nucleotide translocase (ANT) in a conformation that inhibits PTP opening offers a partial defense mechanism against IR injury. Moreover, as ANT forms a complex with the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane, it is possible that this complex is also a target for IR injury-thus favoring Ca2+ release, as well as the supramolecular structure that BMMC protects. These beneficial effects are accompanied by a stimulus of the citric acid cycle-which feed the mitochondrial complexes with the electrons removed from different substrates-as the result of accentuated stimulus of citrate synthase activity by BMMC.


Subject(s)
Bone Marrow , Mitochondrial Membranes , Bone Marrow/metabolism , Calcium/metabolism , Humans , Ischemia/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Permeability , Reperfusion
2.
Mol Ther Methods Clin Dev ; 16: 63-77, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31871958

ABSTRACT

Hypertension is a long-term condition that can increase organ susceptibility to insults and lead to severe complications such as chronic kidney disease (CKD). Extracellular vesicles (EVs) are cell-derived membrane structures that participate in cell-cell communication by exporting encapsulated molecules to target cells, regulating physiological and pathological processes. We here demonstrate that multiple administration of EVs from adipose-derived mesenchymal stromal cells (ASC-EVs) in deoxycorticosterone acetate (DOCA)-salt hypertensive model can protect renal tissue by maintaining its filtration capacity. Indeed, ASC-EVs downregulated the pro-inflammatory molecules monocyte chemoattracting protein-1 (MCP-1) and plasminogen activating inhibitor-1 (PAI1) and reduced recruitment of macrophages in the kidney. Moreover, ASC-EVs prevented cardiac tissue fibrosis and maintained blood pressure within normal levels, thus demonstrating their multiple favorable effects in different organs. By applying microRNA (miRNA) microarray profile of the kidney of DOCA-salt rats, we identified a selective miRNA signature associated with epithelial-mesenchymal transition (EMT). One of the key pathways found was the axis miR-200-TGF-ß, that was significantly altered by EV administration, thereby affecting the EMT signaling and preventing renal inflammatory response and fibrosis development. Our results indicate that EVs can be a potent therapeutic tool for the treatment of hypertension-induced CKD in cardio-renal syndrome.

3.
Cell Physiol Biochem ; 52(6): 1463-1483, 2019.
Article in English | MEDLINE | ID: mdl-31099507

ABSTRACT

BACKGROUND/AIMS: The therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) in kidney injury has been largely reported. However, new approaches are necessary to optimize the efficacy in the treatment of renal diseases. MSCs physiologically are under a low O2 partial pressure (pO2), and culturing adipose-derived MSCs (ADMSCs) in hypoxia alters their secretory paracrine properties. The aim of this study was to evaluate whether hypoxia preconditioning of ADMSCs alters the properties of secreted EVs to improve renal recovery after ischemia-reperfusion injury (IRI). METHODS: The supernatants of ADMSCs cultivated under 21% pO2 (control) or 1% pO2 (hypoxia) were ultracentrifuged for EVs isolation that were posteriorly characterized by flow cytometry and electron microscopy. The uptake and effects of these EVs were analyzed by using in vitro and in vivo models. HK-2 renal tubule cell line was submitted do ATP depletion injury model. Proteomic analyses of these cells treated with EVs after injury were performed by nano-UPLC tandem nano-ESI-HDMSE method. For in vivo analyses, male Wistar rats were submitted to 45 min bilateral ischemia, followed by renal intracapsular administration of ADMSC-EVs within a 72 h reperfusion period. Histological, immunohistochemical and qRT-PCR analysis of these kidneys were performed to evaluate cell death, inflammation and oxidative stress. Kidney function was evaluated by measuring the blood levels of creatinine and urea. RESULTS: The results demonstrate that hypoxia increases the ADMSCs capacity to secrete EVs that trigger different energy supply, antiapoptotic, immunomodulatory, angiogenic and anti-oxidative stress responses in renal tissue compared with EVs secreted in normoxia. Proteomic analyses of renal tubule cells treated with EVs from ADMSCs in normoxia and hypoxia give a specific signature of modulated proteins for each type of EVs, indicating regulation of distinct biological processes. CONCLUSION: In summary, hypoxia potentially offers an interesting strategy to enhance the properties of EVs in the treatment of acute kidney disease.


Subject(s)
Acute Kidney Injury/therapy , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/metabolism , Reperfusion Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Adipose Tissue/cytology , Animals , Cell Hypoxia , Cell Line , Cells, Cultured , Extracellular Vesicles/metabolism , Humans , Kidney/metabolism , Kidney/pathology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Male , Mesenchymal Stem Cells/cytology , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...