Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Antibiotics (Basel) ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36830301

ABSTRACT

Antimicrobial resistance poses a major threat to public health. Given the paucity of novel antimicrobials to treat resistant infections, the emergence of multidrug-resistant bacteria renewed interest in antimicrobial peptides as potential therapeutics. This study designed a new analog of the antimicrobial peptide Plantaricin 149 (Pln149-PEP20) based on previous Fmoc-peptides. The minimal inhibitory concentrations of Pln149-PEP20 were determined for 60 bacteria of different species and resistance profiles, ranging from 1 mg/L to 128 mg/L for Gram-positive bacteria and 16 to 512 mg/L for Gram-negative. Furthermore, Pln149-PEP20 demonstrated excellent bactericidal activity within one hour. To determine the propensity to develop resistance to Pln149-PEP20, a directed-evolution in vitro experiment was performed. Whole-genome sequencing of selected mutants with increased MICs and wild-type isolates revealed that most mutations were concentrated in genes associated with membrane metabolism, indicating the most likely target of Pln149-PEP20. Synchrotron radiation circular dichroism showed how this molecule disturbs the membranes, suggesting a carpet mode of interaction. Membrane depolarization and transmission electron microscopy assays supported these two hypotheses, although a secondary intracellular mechanism of action is possible. The molecule studied in this research has the potential to be used as a novel antimicrobial therapy, although further modifications and optimization remain possible.

2.
Biologicals ; 80: 18-26, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36414490

ABSTRACT

Routine immunization against diphtheria and tetanus has drastically reduced the incidence of these diseases worldwide. Anti-diphtheria/tetanus vaccine has in general aluminum salt as adjuvant in its formulation that can produce several adverse effects. There is a growing interest in developing new adjuvants. In this study, we evaluated the efficiency of SBA-15 as an adjuvant in subcutaneous immunization in mice with diphtheria (dANA) and tetanus (tANA) anatoxins as well as with the mixture of them (dtANA). The tANA molecules and their encapsulation in SBA-15 were characterized using Small-Angle X-ray Scattering (SAXS), Dynamical Light Scattering (DLS), Nitrogen Adsorption Isotherm (NAI), Conventional Circular Dichroism (CD)/Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy, and Tryptophan Fluorescence Spectroscopy (FS). The primary and secondary antibody response elicited by subcutaneous immunization of High (HIII) and Low (LIII) antibody responder mice with dANA, tANA, or dtANA encapsulated in the SBA-15 were determined. We demonstrated that SBA-15 increases the immunogenicity of dANA and tANA antigens, especially when administered in combination. We also verified that SBA-15 modulates the antibody response of LIII mice, turning them into high antibody responder. Thus, these results suggest that SBA-15 may be an effective adjuvant for different vaccine formulations.


Subject(s)
Diphtheria , Tetanus , Mice , Animals , Immunity, Humoral , Scattering, Small Angle , X-Ray Diffraction , Diphtheria/prevention & control , Tetanus/prevention & control , Tetanus Toxoid , Silicon Dioxide/pharmacology , Adjuvants, Immunologic/pharmacology , Immunization, Secondary/methods , Antibodies, Bacterial
3.
IUCrJ ; 9(Pt 1): 11-20, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35059205

ABSTRACT

This article summarizes developments attained in oral vaccine formulations based on the encapsulation of antigen proteins inside porous silica matrices. These vaccine vehicles show great efficacy in protecting the proteins from the harsh acidic stomach medium, allowing the Peyer's patches in the small intestine to be reached and consequently enhancing immunity. Focusing on the pioneering research conducted at the Butantan Institute in Brazil, the optimization of the antigen encapsulation yield is reported, as well as their distribution inside the meso- and macroporous network of the porous silica. As the development of vaccines requires proper inclusion of antigens in the antibody cells, X-ray crystallography is one of the most commonly used techniques to unveil the structure of antibody-combining sites with protein antigens. Thus structural characterization and modelling of pure antigen structures, showing different dimensions, as well as their complexes, such as silica with encapsulated hepatitis B virus-like particles and diphtheria anatoxin, were performed using small-angle X-ray scattering, X-ray absorption spectroscopy, X-ray phase contrast tomography, and neutron and X-ray imaging. By combining crystallography with dynamic light scattering and transmission electron microscopy, a clearer picture of the proposed vaccine complexes is shown. Additionally, the stability of the immunogenic complex at different pH values and temperatures was checked and the efficacy of the proposed oral immunogenic complex was demonstrated. The latter was obtained by comparing the antibodies in mice with variable high and low antibody responses.

4.
IUCrJ, v. 9, n. 1, p. 11-20, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4110

ABSTRACT

This article summarizes developments attained in oral vaccine formulations based on the encapsulation of antigen proteins inside porous silica matrices. These vaccine vehicles show great efficacy in protecting the proteins from the harsh acidic stomach medium, allowing the Peyer's patches in the small intestine to be reached and consequently enhancing immunity. Focusing on the pioneering research conducted at the Butantan Institute in Brazil, the optimization of the antigen encapsulation yield is reported, as well as their distribution inside the meso- and macroporous network of the porous silica. As the development of vaccines requires proper inclusion of antigens in the antibody cells, X-ray crystallography is one of the most commonly used techniques to unveil the structure of antibody-combining sites with protein antigens. Thus structural characterization and modelling of pure antigen structures, showing different dimensions, as well as their complexes, such as silica with encapsulated hepatitis B virus-like particles and diphtheria anatoxin, were performed using small-angle X-ray scattering, X-ray absorption spectroscopy, X-ray phase contrast tomography, and neutron and X-ray imaging. By combining crystallography with dynamic light scattering and transmission electron microscopy, a clearer picture of the proposed vaccine complexes is shown. Additionally, the stability of the immunogenic complex at different pH values and temperatures was checked and the efficacy of the proposed oral immunogenic complex was demonstrated. The latter was obtained by comparing the antibodies in mice with variable high and low antibody responses.

5.
Int J Biol Macromol ; 112: 1122-1130, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29452186

ABSTRACT

Seaweeds are sources of biomolecules with biological activities and pharmacological potential - for example, lectins, a group of proteins that can bind reversibly to carbohydrates or compounds containing them. The aim of this study was to elucidate the structural properties of a lectin extracted from the red seaweed Bryothamnion triquetrum (BtL) and to investigate its anti-inflammatory activity in mice. The lectin was purified by precipitation with ammonium sulfate and ion-exchange chromatography. Its secondary structure and tryptophan (Trp) microenvironment were analyzed by circular dichroism spectroscopy and steady-state fluorescence spectroscopy, respectively. The anti-inflammatory effect was evaluated by means of paw edema induced by carrageenan or dextran, myeloperoxidase activity in paw tissue, and by measurement of leukocyte and neutrophil migration and cytokine quantification in a peritonitis model. The secondary structure of BtL is mostly composed of ß-strands and unordered conformation, and it is quite resistant to extremes of pH and temperature, preserving the exposure of Trp residues under these conditions. In an assessment of biological activities, groups of mice were subjected to pretreatment with BtL before the inflammatory stimulus. BtL had anti-inflammatory effects in the models tested, and hence may be considered a molecule with potential to be used in the pharmaceutical industry.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Lectins/chemistry , Lectins/pharmacology , Rhodophyta/chemistry , Seaweed/chemistry , Animals , Anti-Inflammatory Agents/therapeutic use , Carrageenan , Cell Movement/drug effects , Dextrans , Edema/drug therapy , Edema/pathology , Female , Hemagglutination/drug effects , Hydrogen-Ion Concentration , Interleukin-1beta/biosynthesis , Lectins/isolation & purification , Lectins/therapeutic use , Mice , Peritonitis/drug therapy , Peritonitis/pathology , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism , Protein Structure, Secondary , Rabbits , Spectrometry, Fluorescence , Temperature , Tumor Necrosis Factor-alpha/biosynthesis
6.
J Exp Zool A Ecol Genet Physiol ; 325(7): 425-33, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27460953

ABSTRACT

Some amphibian species have developed a breeding strategy in which they deposit their eggs in stable foam nests to protect their eggs and larvae. The frog foam nests are rich in proteins (ranaspumin), especially surfactant proteins, involved in the production of the foam nest. Despite the ecological importance of the foam nests for evolution and species conservation, the biochemical composition, the long-term stability and even the origin of the components are still not completely understood. Recently we showed that Lv-RSN-1, a 23.5-kDa surfactant protein isolated from the nest of the frog Leptodacylus vastus, presents a structural conformation distinct from any protein structures yet reported. So, in the current study we aimed to reveal the protein composition of the foam nest of L. vastus and further characterize the Lv-RSN-1. Proteomic analysis showed the foam nest contains more than 100 of proteins, and that Lv-RSN-1 comprises 45% of the total proteins, suggesting a key role in the nest construction and stability. We demonstrated by Western blotting that Lv-RSN-1 is mainly produced only by the female in the pars convoluta dilata, which highlights the importance of the female preservation for conservation of species that depend on the production of foam nests in the early stages of development. Overall, our results showed the foam nest of L. vastus is composed of a great diversity of proteins and that besides Lv-RSN-1, the main protein in the foam, other proteins must have a coadjuvant role in building and stability of the nest.


Subject(s)
Amphibian Proteins/chemistry , Anura/metabolism , Cloaca/metabolism , Oviducts/metabolism , Amphibian Proteins/analysis , Amphibian Proteins/isolation & purification , Amphibian Proteins/metabolism , Animals , Anura/physiology , Female , Male , Protein Conformation , Proteomics , Reproduction , Surface-Active Agents/chemistry
7.
Braz. j. microbiol ; 44(4): 1291-1298, Oct.-Dec. 2013. ilus, tab
Article in English | LILACS | ID: lil-705286

ABSTRACT

The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5%) until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively) but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Bacteria/drug effects , Bacteriocins/metabolism , Cell Membrane/drug effects , Lipid Bilayers/metabolism , Antimicrobial Cationic Peptides/genetics , Bacteriocins/genetics , Lactobacillus plantarum/metabolism , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
8.
Biochim Biophys Acta ; 1808(10): 2501-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21798235

ABSTRACT

This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: α-helix (20%), ß-sheet (33%), turned (19%) and unordered (28%), RMSD 1%. CpOsm was stable at up to 75°C, and thermal denaturation (T(m)) was calculated to be 77.8°C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Calotropis/chemistry , Latex/chemistry , Plant Proteins/chemistry , Plant Proteins/pharmacology , Chromatography, Ion Exchange , Circular Dichroism , Hydrogen-Ion Concentration , Molecular Structure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Ultraviolet , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...