Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Food ; 25(7): 695-709, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35834631

ABSTRACT

Spirulina platensis is a cyanobacterium with high protein content and presenting neuroprotective effects. Now, we studied a protein-enriched fraction (SPF), on behavior, neurochemical and immunohistochemical (IHC) assays in hemiparkinsonian rats, distributed into the groups: SO (sham-operated), 6-hydroxydopamine (6-OHDA), and 6-OHDA (treated with SPF, 5 and 10 mg/kg, p.o., 15 days). Afterward, animals were subjected to behavioral tests and euthanized, and brain areas used for neurochemical and IHC assays. SPF partly reversed the changes in the apomorphine-induced rotations, open field and forced swim tests, and also the decrease in striatal dopamine and 3,4-dihydroxyphenylacetic acid contents seen in hemiparkinsonian rats. Furthermore, SPF reduced brain oxidative stress and increased striatal expressions of tyrosine hydroxylase and dopamine transporter and significantly reduced hippocampal inducible nitric oxide synthase, cyclooxygenase-2 and glial fibrillary acidic protein expressions. The data suggest that the protein fraction from S. platensis, through its brain anti-inflammatory and antioxidative actions, exerts neuroprotective effects that could benefit patients affected by neurodegenerative diseases, like Parkinson's disease.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Spirulina , Tissue Extracts , Animals , Brain/drug effects , Corpus Striatum/drug effects , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Neuroprotection , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidopamine , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Rats , Spirulina/metabolism , Tissue Extracts/metabolism , Tissue Extracts/pharmacology , Tissue Extracts/therapeutic use
2.
IBRO Rep ; 4: 7-13, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30135946

ABSTRACT

Ketamine (KET), a NMDA receptor antagonist, has been studied for its rapid and efficacious antidepressant effect, even for the treatment-resistant depression. Although depression is a major cause of disability worldwide, the treatment can be feasible, affordable and cost-effective, decreasing the population health burden. We evaluated the antidepressive-like effects of KET and its actions on monoamine contents (DA and its metabolites, as well as 5-HT) and on tyrosine hydroxylase (TH). In addition DAT and SERT (DA and 5-HT transporters, respectively) were also assessed. Male Swiss mice were divided into Control and KET-treated groups. The animals were acutely treated with KET (2, 5 or 10 mg/kg, i.p.) and subjected to the forced swimming test, for evaluation of the antidepressive-like behavior. Imipramine and fluoxetine were used as references. The results showed that KET decreased dose-dependently the immobility time and shortly after the test, the animals were euthanized for striatal dissections and monoamine determinations. In addition, the brain (striata, hippocampi and prefrontal cortices) was immunohistochemically processed for TH, DAT and SERT. KET at its higher dose increased DA and its metabolites (DOPAC and HVA) and mainly 5-HT contents, in mice striata, effects associated with increases in TH and decreases in DAT immunoreactivities. Furthermore, reductions in SERT immunoreactivities were observed in the striatum and hippocampus. The results indicate that KET antidepressive-like effect probably involves, among other factors, monoaminergic pathways, as suggested by the increased striatal TH immunoreactivity and reduced brain DA (DAT) and 5-HT (SERT) transporters.

SELECTION OF CITATIONS
SEARCH DETAIL
...