Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pharmacol Biochem Behav ; 173: 44-50, 2018 10.
Article in English | MEDLINE | ID: mdl-30125592

ABSTRACT

Agmatine is a neuromodulator that has been proposed as a therapeutic strategy for the treatment of major depressive disorder (MDD). A previous study reported that agmatine caused a fast-acting effect in mice subjected to chronic mild stress without causing changes in the levels of synaptic proteins in the prefrontal cortex. We examined whether a single administration of agmatine is able to counteract the depressive-like behavior induced by chronic administration of corticosterone, a pharmacological model of stress, paralleled with the modulation of synaptic protein levels in the prefrontal cortex and hippocampus. Female mice received corticosterone (20 mg/kg, p.o.) for 21 days and, in the last day of treatment, were administered with a single dose of agmatine (0.1 mg/kg, p.o.), fluoxetine (10 mg/kg, p.o.; control for a conventional antidepressant) or ketamine (1 mg/kg, i.p.; control for a fast-acting antidepressant). Agmatine, similar to ketamine, reversed the depressive-like behavior induced by corticosterone in the tail suspension test (TST), an effect that was not observed in mice treated with fluoxetine. The immunocontent of GluA1 was increased by all the treatments in the hippocampus of control mice, whereas PSD95 was not significantly altered by treatments in any brain structure. Although the levels of synaptic proteins do not seem to account for the behavioral findings reported here, the present study provides clear evidence for the fast-acting antidepressant profile of agmatine in the TST, similar to ketamine.


Subject(s)
Agmatine/administration & dosage , Antidepressive Agents/pharmacology , Corticosterone/pharmacology , Depression/chemically induced , Depression/prevention & control , Excitatory Amino Acid Antagonists/pharmacology , Fluoxetine/pharmacology , Ketamine/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Disks Large Homolog 4 Protein/metabolism , Female , Mice , Receptors, AMPA/metabolism
2.
Neurotox Res ; 34(3): 452-462, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29679291

ABSTRACT

N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3ß (GSK-3ß), ERK1/2, and p38MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection against a behavioral and cellular manifestation of neural damage.


Subject(s)
Excitatory Amino Acid Agonists/administration & dosage , Hippocampus/pathology , N-Methylaspartate/administration & dosage , Neurodegenerative Diseases/chemically induced , Phosphatidylinositol 3-Kinase/metabolism , Quinolinic Acid/toxicity , Signal Transduction/drug effects , Animals , Disease Models, Animal , Drug Administration Schedule , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Male , Mice , Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/pathology , Time Factors
3.
Metallomics ; 8(6): 597-604, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26790482

ABSTRACT

Manganese (Mn) is an essential trace element required for a range of physiological processes, but Mn can also be neurotoxic especially during development. Excess levels of Mn accumulate preferentially in the striatum and can induce a syndrome called manganism, characterized by an initial stage of psychiatric disorder followed by motor impairment. In the present study, we investigated the effects of Mn exposure on the developing dopaminergic system, specifically tyrosine hydroxylase (TH) protein and phosphorylation levels in the striatum of rats. Neonatal rats were exposed to Mn intraperitoneally (ip) from post-natal day 8 up to day 12 (PND8-12). Striatal tissue was analysed on PND14 or PND70, to detect either short-term or long-term effects induced by Mn exposure. There was a dose dependent increase in TH protein levels in the striatum at PND14, reaching significance at 20 mg kg(-1) Mn, and this correlated with an increase in TH phosphorylation at serines 40, 31 and 19. However, in the striatum at PND70, a time by which Mn levels were no longer elevated, there was a dose dependent decrease in TH protein levels, reaching significance at 20 mg kg(-1) Mn, and this correlated with TH phosphorylation at Ser40 and Ser19. There was however a significant increase in phosphorylation of TH at serine 31 at 20 mg kg(-1) Mn, which did not correlate with TH protein levels. Taken together our findings suggest that neonatal Mn exposure can have both short-term and long-term effects on the regulation of TH in the striatal dopaminergic system.


Subject(s)
Corpus Striatum/enzymology , Gene Expression Regulation, Enzymologic/drug effects , Manganese/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Animals , Animals, Newborn , Corpus Striatum/drug effects , Male , Phosphorylation/drug effects , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/genetics
4.
Mol Neurobiol ; 53(5): 2954-2968, 2016 07.
Article in English | MEDLINE | ID: mdl-25943184

ABSTRACT

Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 µg/mouse, icv, PI3K inhibitor), ZnPP (10 µg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 µg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 µg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.


Subject(s)
Antidepressive Agents/pharmacology , Creatine/pharmacology , Intracellular Space/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Disks Large Homolog 4 Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Heme Oxygenase-1/metabolism , Hippocampus/metabolism , Male , Mice , Phosphorylation/drug effects , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Substrate Specificity/drug effects , TOR Serine-Threonine Kinases/metabolism
5.
Neurotoxicology ; 50: 28-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26215118

ABSTRACT

Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum.


Subject(s)
Cognition Disorders/chemically induced , Developmental Disabilities/chemically induced , Manganese/toxicity , Movement Disorders/etiology , Age Factors , Animals , Animals, Newborn , Brain/metabolism , Discrimination, Psychological/drug effects , Disease Models, Animal , Exploratory Behavior/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Male , Perceptual Disorders/chemically induced , Rats , Rats, Wistar , Recognition, Psychology/drug effects , Smell/drug effects , Sulfhydryl Compounds/metabolism
6.
Pharmacol Biochem Behav ; 130: 9-14, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25553821

ABSTRACT

Agmatine, an endogenous guanidine amine, has been shown to produce antidepressant-like effects in animal studies. This study investigated the effects of the combined administration of agmatine with either conventional monoaminergic antidepressants or the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 in the tail suspension test (TST) in mice. The aim was to evaluate the extent of the antidepressant synergism by examining the ability of a fixed dose of agmatine to shift the antidepressant potency of fluoxetine, imipramine, bupropion and MK-801. A sub-effective dose of agmatine (0.0001 mg/kg, p.o.) significantly increased the potency by which fluoxetine, imipramine, bupropion and MK-801 decreased immobility time in the TST by 2-fold (fluoxetine), 10-fold (imipramine and bupropion) and 100-fold (MK-801). Combined with previous evidence indicating a role of monoaminergic systems in the effect of agmatine, the current data suggest that agmatine may modulate monoaminergic neurotransmission and augment the activity of conventional antidepressants. Moreover, this study found that agmatine substantially augmented the antidepressant-like effect of MK-801, reinforcing the notion that this compound modulates NMDA receptor activation. These preclinical data may stimulate future clinical studies testing the effects of augmentation therapy with agmatine for the management of depressive disorders.


Subject(s)
Agmatine/pharmacology , Antidepressive Agents/pharmacology , Dizocilpine Maleate/pharmacology , Animals , Bupropion/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Female , Fluoxetine/pharmacology , Hindlimb Suspension , Imipramine/pharmacology , Mice , Motor Activity/drug effects
7.
J Psychiatr Res ; 58: 137-46, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25161097

ABSTRACT

Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001-0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237-258% of control), protein kinase B/Akt (Ser(473)) (116-127% of control), glycogen synthase kinase-3ß (Ser(9)) (110-113% of control), extracellular signal-regulated kinases 1/2 (119-137% and 121-138% of control, respectively) and cAMP response elements (Ser(133)) (127-152% of control), and brain-derived-neurotrophic factor (137-175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001-0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38(MAPK) phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus.


Subject(s)
Agmatine/pharmacology , Antidepressive Agents/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Signal Transduction/drug effects , Analysis of Variance , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Female , Gene Expression Regulation/drug effects , Hindlimb Suspension , Immobility Response, Tonic/drug effects , Mice
8.
Pharmacol Rep ; 66(4): 653-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24948068

ABSTRACT

BACKGROUND: The aim of this study was to investigate the involvement of signaling pathways on the creatine antidepressant-like effect in the tail suspension test (TST) in mice. METHODS: The TST was used to assess the antidepressant-like properties of creatine. RESULTS: The anti-immobility effect of creatine (1mg/kg, p.o.) in the TST was blocked by i.c.v. pretreatment with H-89 (1µg/site, PKA inhibitor), KN-62 (1µg/site, CAMK-II inhibitor), chelerythrine (1µg/site, PKC inhibitor), U0126 (5µg/site, MEK1/2 inhibitor) or PD09058 (5µg/site, MEK1/2 inhibitor). CONCLUSION: These results suggest that the antidepressant-like effect of creatine is dependent on PKA, CaMK-II, PKC and MEK 1/2 activation.


Subject(s)
Antidepressive Agents/therapeutic use , Creatine/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/enzymology , Animals , Antidepressive Agents/administration & dosage , Behavior, Animal/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Creatine/administration & dosage , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Hindlimb Suspension , Injections, Intraventricular , Male , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Motor Activity/drug effects , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology
9.
Neurochem Int ; 62(6): 836-42, 2013 May.
Article in English | MEDLINE | ID: mdl-23454192

ABSTRACT

The excitotoxicity induced by excessive activation of the glutamatergic neurotransmission pathway is involved in several neuropathologies. In this sense, molecules that prevent the release of glutamate or the excessive activation of its receptors can be useful in preventing the neuronal cell death observed in these diseases. Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates, and some have been used in the study and purification of glutamate receptors. ConBr is a mannose/glucose-binding lectin purified from Canavalia brasiliensis seeds. In the present study, we aimed to evaluate the neuroprotective activity of ConBr against glutamate-induced excitotoxicity. Hippocampal slices were isolated from adult male mice and incubated for 6h in Krebs saline/DMEM buffer alone (control), in the presence of glutamate or glutamate plus ConBr. The phosphorylation of Akt and mitogen activated protein kinases (MAPKs) such as ERK1/2, p38(MAPK) and JNK1/2/3 was evaluated with western blotting. The results indicate that glutamate provoked a reduction in the hippocampal slice viability (-25%), diminished the phosphorylation of Akt and augmented p38(MAPK) and ERK1 phosphorylation. No changes were observed in the phosphorylation of JNK1/2/3 or ERK2. Notably, ConBr, through a mechanism dependent on carbohydrate interaction, prevented the reduction of cell viability and Akt phosphorylation induced by glutamate. Furthermore, in the presence of the PI3K inhibitor LY294002, ConBr was unable to reverse glutamate neurotoxicity. Taken together, our data suggest that the neuroprotective effect of ConBr against glutamate neurotoxicity requires oligosaccharide interaction and is dependent on the PI3K/Akt pathway.


Subject(s)
Canavalia/chemistry , Excitatory Amino Acid Antagonists , Glutamic Acid/toxicity , Hippocampus/drug effects , Neuroprotective Agents , Oncogene Protein v-akt/physiology , Phosphatidylinositol 3-Kinases/physiology , Plant Lectins/pharmacology , Signal Transduction/drug effects , Animals , Blotting, Western , Carbohydrate Metabolism/drug effects , Cell Survival/drug effects , Chromones/pharmacology , Enzyme Inhibitors/pharmacology , Hippocampus/pathology , In Vitro Techniques , Male , Mice , Mitogen-Activated Protein Kinases/physiology , Morpholines/pharmacology , Phosphorylation , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Tetrazolium Salts , Thiazoles
10.
Arch Toxicol ; 87(7): 1231-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23385959

ABSTRACT

While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects.


Subject(s)
Antioxidants/pharmacology , Basal Ganglia/drug effects , Behavior, Animal/drug effects , Chromans/pharmacology , Manganese Poisoning/drug therapy , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Age Factors , Animals , Animals, Newborn , Basal Ganglia/metabolism , Basal Ganglia/physiopathology , Caspases/metabolism , Disease Models, Animal , Enzyme Activation , Female , Male , Manganese Poisoning/etiology , Manganese Poisoning/metabolism , Manganese Poisoning/physiopathology , Manganese Poisoning/psychology , Phosphorylation , Rats , Rats, Wistar , Rotarod Performance Test , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
11.
J Ethnopharmacol ; 145(3): 737-45, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23237932

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia avellanedae Lorentz ex Griseb is a plant employed in tropical America folk medicine for the treatment of several diseases, including depressive disorders. AIM OF THE STUDY: To investigate the ability of Tabebuia avellanedae ethanolic extract (EET) administered chronically to cause an antidepressant-like effect in the tail suspension test (TST), a predictive test of antidepressant activity, and to reverse behavioral (hyperactivity, anhedonic-like behavior and increased immobility time in the TST) and biochemical changes induced by olfactory bulbectomy (OB), a model of depression, in mice. MATERIALS AND METHODS: Mice were submitted to OB to induce depressive-related behaviors, which were evaluated in the open-field test (hyperactivity), splash test (loss of motivational and self-care behavior indicative of an anhedonic-like behavior) and TST (increased immobility time). Phosphorylation levels of Akt, GSK-3ß, ERK1/2 and CREB, as well as BDNF immunocontent, were evaluated in the hippocampus of bulbectomized mice or sham-operated mice treated for 14 days by p.o. route with EET or vehicle. RESULTS: EET (10 and 30mg/kg) given 14 days by p.o route to mice reduced the immobility time in the TST without altering locomotor activity, an indicative of an antidepressant-like effect. EET per se increased both CREB (Ser(133)) and GSK-3ß (Ser(9)) phosphorylation (at doses of 10-30 and 30mg/kg, respectively) in sham-operated mice. OB caused hyperactivity, loss of motivational and self-care behavior, increased immobility time in the TST and an increase in CREB and ERK1 phosphorylation, as well as BDNF immunocontent. EET abolished all these OB-induced alterations except the increment of CREB phosphorylation. Akt (Ser(473)) and ERK2 phosphorylation levels were not altered in any group. CONCLUSIONS: EET ability to abolish the behavioral changes induced by OB was accompanied by modulation of ERK1 and BDNF signaling pathways, being a promising target of EET. Results indicate that this plant could constitute an attractive strategy for the management of depressive disorders, once more validating the traditional use of this plant.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Plant Extracts/therapeutic use , Tabebuia , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Depression/metabolism , Depression/physiopathology , Ethanol/chemistry , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Olfactory Bulb/surgery , Phytotherapy , Plant Bark , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Solvents/chemistry
12.
Behav Brain Res ; 237: 176-84, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23018126

ABSTRACT

The olfactory bulbectomy (OB) animal model of depression is a well-established model that is capable of detecting antidepressant activity following chronic drug therapy, and the surgery results in behavioral and biochemical changes that are reminiscent of various symptoms of depression. In the present study, we investigated the degree to which 14 days of p.o. administration of the classic antidepressant fluoxetine (10mg/kg) were able to reverse OB-induced changes in behavior (namely, hyperactivity in the open-field test and reduced motivational and self-care behaviors in the splash test) and in the activation of hippocampal cell signaling pathways that are thought to be involved in synaptic plasticity. OB caused significant increases in ERK1 and CREB (Ser(133)) phosphorylation and in the expression of BDNF immunocontent, all of which were prevented by fluoxetine administration. Moreover, fluoxetine administration also caused a significant decrease in ERK2 phosphorylation in mice that had undergone OB. Neither Akt nor GSK-3ß phosphorylation was altered in any experimental condition. In conclusion, the present study shows that OB can induce significant behavioral changes that are accompanied by the activation of hippocampal signaling pathways, namely the ERK1/CREB/BDNF pathway, which is involved in the synaptic plasticity. Conversely, fluoxetine prevented these OB-induced behavioral changes and avoided the activation of ERK1/CREB/BDNF in the hippocampus. Taken together, our results extend the data from the existing literature regarding OB-induced behavioral and neurochemical changes, and suggest a possible underlying mechanism that can account for the antidepressant effect of fluoxetine in this model.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Fluoxetine/pharmacology , Hippocampus/cytology , Neuronal Plasticity/drug effects , Neurons/drug effects , Signal Transduction/drug effects , Analysis of Variance , Anhedonia/drug effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Disease Models, Animal , Exploratory Behavior/drug effects , Female , Food Preferences/drug effects , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/drug effects , Hyperkinesis/drug therapy , Hyperkinesis/etiology , MAP Kinase Signaling System/drug effects , Mice , Olfaction Disorders/complications , Olfaction Disorders/etiology , Olfactory Bulb/surgery , Oncogene Protein v-akt/metabolism
13.
PLoS One ; 7(3): e33057, 2012.
Article in English | MEDLINE | ID: mdl-22427945

ABSTRACT

Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.


Subject(s)
Basal Ganglia/drug effects , Basal Ganglia/metabolism , Environmental Exposure , Gene Expression Regulation, Developmental/drug effects , Manganese/toxicity , Psychomotor Performance/drug effects , Analysis of Variance , Animals , Basal Ganglia/growth & development , Blotting, Western , Caspases/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , MAP Kinase Signaling System/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Spectrophotometry, Atomic
14.
Neurochem Res ; 37(2): 288-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21948344

ABSTRACT

Lectins are proteins capable of reversible binding to carbohydrates or glycoconjugates. In the central nervous system of mammals, lectins with affinity for mannose/glucose or galactose can modulate cellular communication. ConBr, a lectin isolated from the seeds of Canavalia brasiliensis, previously showed antidepressant effect in the forced swimming test in mice, with involvement of the monoaminergic system. In this study, we investigated the neuroprotective effects of ConBr against quinolinic acid (QA), a well-known NMDA agonist that produces severe neurotoxicity when administered in vivo. ConBr (10 µg/site) administered via intracerebroventricular (i.c.v.) showed a neuroprotective activity against seizures induced by QA (36.8 nmol/site; i.c.v.) when administered 15 min prior to QA, with a percentage of protection around 50%. ConBr was also able to significantly decrease the severity of the seizures but without changes in the latency of the first convulsion or the duration of the seizures. This effect was dependent on the structural integrity of the ConBr protein and its binding capacity to oligosaccharides residues. ConA, a lectin with high similarity to ConBr, did not reverse the QA-induced seizures. Moreover, ConBr was able to protect against hippocampal cell death caused by QA, which was measured by propidium iodide incorporation. QA caused activation of JNK2 and improved the phosphorylation of Ser831 and 845 on the AMPA receptor GluR1 subunit, and both of these effects were counteracted by ConBr. Our data suggest that the lectin ConBr may exert a modulatory action on NMDA receptors, which inhibits its activity in response to QA.


Subject(s)
Canavalia/embryology , Plant Lectins/pharmacology , Quinolinic Acid/toxicity , Seeds/chemistry , Seizures/prevention & control , Animals , Blotting, Western , Hippocampus/drug effects , In Vitro Techniques , Male , Mice , Receptors, N-Methyl-D-Aspartate/agonists , Seizures/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...