Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1527: 345-348, 2017.
Article in English | MEDLINE | ID: mdl-28116728

ABSTRACT

The endothelium, which is at the interface between circulating blood and the vascular wall, comprises a simple squamous layer of cells that lines the inner surface of all blood vessels. Endothelial cells are highly metabolically active and play an important role in many physiological functions, including control of vasomotor tone, blood cell trafficking, vascular permeability, and maintenance of vascular integrity (Mensah, Vascul Pharmacol 46(5):310-314, 2007; Yetik-Anacak and Catravas, Vascul Pharmacol 45(5):268-276, 2006). Endothelial cells are characteristically 'quiescent' in that they do not actively proliferate, with the average lifespan of an endothelial cell being >1 year. The endothelium is very sensitive to mechanical stimuli (stretch, shear stress, pressure), humoral agents (angiotensin II (Ang II), endothelin-1 (ET-1), aldosterone, bradykinin, thromoxane) and chemical factors (glucose, reactive oxygen species (ROS)) and responds by releasing endothelial-derived mediators, such as nitric oxide (NO), prostacyclin (PGI2), platelet-activating factor (PAF), C-type atrial natriuretic peptide (ANP), and ET-1 to regulate vascular tone, prevent thrombosis and inflammation, and maintain structural integrity. Primary culture of endothelial cells is an important tool in dissecting the role of the endothelium in many physiological or pathological responses. This chapter describes the explant method for culture of endothelial cells from large vessels. Cells derived by the protocol described here can be used for cell biology and molecular biology studies in hypertension and other cardiovascular diseases where endothelial function may be impaired.


Subject(s)
Cell Culture Techniques/methods , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Animals , Cells, Cultured , Humans , Mice
2.
Methods Mol Biol ; 1527: 349-354, 2017.
Article in English | MEDLINE | ID: mdl-28116729

ABSTRACT

Primary culture of vascular smooth muscle cells is an important in vitro model for the dissection of molecular mechanisms related to a specific physiological or pathological response at the cellular level. Cultured cells also provide an excellent model to study cell biology. This chapter describes a user-friendly and practical protocol for isolation of vascular smooth muscle cells from small and large vessels by enzymatic dissociation, which can be applied to vessels from different species, including rodents and humans.


Subject(s)
Cell Culture Techniques/methods , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Animals , Cells, Cultured , Humans , Rats
3.
Front Physiol ; 6: 269, 2015.
Article in English | MEDLINE | ID: mdl-26500555

ABSTRACT

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepR(db)/LepR(db) (db/db)] mice, a model of DM2, and their counterpart controls [LepR(db)/LepR(+), (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser(1177)) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) ß subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

4.
Life Sci ; 118(2): 129-35, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-24418002

ABSTRACT

The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.


Subject(s)
Diabetes Mellitus/drug therapy , Endothelins/metabolism , Endothelium, Vascular/metabolism , Animals , Diabetic Angiopathies/drug therapy , Endothelium, Vascular/pathology , Humans , Receptors, Endothelin/metabolism
5.
Front Physiol ; 3: 89, 2012.
Article in English | MEDLINE | ID: mdl-22514541

ABSTRACT

Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...