Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 327(1): 129-37, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18755475

ABSTRACT

The poly(N,N-diethylacrylamide) (h-PDEA) homopolymer and the poly(N-decylacrylamide)-b-PDEA (PDcA(11)-b-PDEA(231)) diblock copolymer were studied in the range of 10 to 40 degrees C, at the air-water interface. The pi-A isotherms of h-PDEA appear nearly invariant with temperature while the pi-A isotherms of PDcA(11)-b-PDEA(231) deviate significantly to lower areas with the temperature increase evidencing the thermo-responsiveness of this diblock copolymer at the interface. For the copolymer, the limiting area per segment versus temperature shows a break point around 29 degrees C, slightly lower than the lower critical solution temperature (LCST) of h-PDEA in water (31-33 degrees C). AFM images of LB monolayers transferred at 40 degrees C revealed for both polymers the presence of hydrophobic aggregates due to the conformational changes (collapse) of chains that occur at the LCST. Differences in the morphology of these aggregates, flat irregular structures for h-PDEA and round-shaped domains for PDcA(11)-b-PDEA(231), were related with the condensing effect of the hydrophobic block. The PDcA(11) block, anchoring the polymer to the interface, ensures a better stability and cohesion to the film and preserves the thermo-sensitivity of the h-PDEA at the interface.

2.
Langmuir ; 23(18): 9310-9, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17655263

ABSTRACT

The interfacial behavior of poly(isoprene-b-methyl methacrylate) diblock copolymers (PI-b-PMMA), with similar PMMA blocks but differing in the percentage of PI segments, SP19 (5% PI) and SP38 (52% PI), was studied at the air-water interface. The surface pressure-area (pi-A) isotherms, compression-expansion cycles, and relaxation curves were compared with those of the PMMA homopolymer. The short hydrophobic PI block of SP19 does not contribute to the mean molecular area at low surface pressures and yet has a negative contribution (condensing effect) when the surface pressure increases. On the contrary, the long PI block of SP38 contributes considerably to the surface area from low to high surface pressures. The A-t relaxation curves compare well with those of PMMA at low surface pressures (pi = 2 mN.m-1), but not at intermediate and high pressures (pi = 10, 30 mN.m-1), where a clear dependence on the length of the PI block was observed. The quantitative analysis of the relaxation curves at high pressures shows both a fast and slow component, attributed mostly to the local and middle-to-long-range reorganization of PMMA chains, respectively. PI-b-PMMA diblocks and PMMA were further blended with PS. The PS and PMMA are immiscible at the air-water interface. The addition of PS does not change the pi-A isotherm of PMMA, but the copolymers blended with PS form films that are more condensed at low pressures. The Langmuir-Blodgett (LB) films transferred onto mica substrates were analyzed by atomic force microscopy (AFM). The LB films of single diblocks are uniform, while those of PI-b-PMMA and PMMA blended with PS show aggregates with variable patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...