Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg Sci ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36884288

ABSTRACT

BACKGROUND: The neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), the lymphocyte-monocyte ratio (LMR), the neutrophil-monocyte ratio (NMR) and the systemic immune inflammation index (SII) are associated with clinical outcomes in oncological diseases, cardiovascular diseases, infectious / inflammatory diseases, endocrinological, pulmonary and brain injuries. Here, we investigate its association with hospital mortality in patients with severe traumatic brain injury. METHODS: We retrospectively reviewed clinical data from patients with severe traumatic brain injury (sTBI) who were treated in our department between January 2015 and December 2020. NLR, PLR, NMR, LMR and SII data were collected between admission and day 3, as well as other indicators related. The relationship between hematological ratios and in-hospital mortality were analyzed. RESULTS: A total of 96 patients were included in study, hospital mortality was 40.6% (N.=39). The levels of NLR on admission (D0), NLR day 1 (D1), NLR day 2 (D2), NLR day 3 (D3), NMR day 1 (D1) and NMR day (2) remained significantly higher in patients with death intra-hospital (P=0.030; P=0.038; P=0.016; P=0.048; P=0.046 and P=0.001, respectively). Multivariate logistic analysis showed that higher NLR values at admission and day 2 NMR were associated with in-hospital mortality (OR=1.120, P=0.037; and OR=1.307, P=0.004, respectively). Analysis of the recipient operating characteristic (ROC) curve showed that the NLR on admission had a sensitivity of 59.0% and a specificity of 66.7% (area under the curve 0.630, P=0.031, Youden's Index 0.26) and the NMR of day 2 had a sensitivity of 67.7% and a specificity of 70.4% (area under the curve 0.719, P=0.001, Youden's index 0.38) to predict mortality intra-hospital based on the best threshold. CONCLUSIONS: Our analysis indicates that higher NLR levels on admission and day 2 NMR are independent predictors of in-hospital mortality in patients with sTBI.

2.
Behav Brain Res ; 393: 112770, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32561388

ABSTRACT

Omega-3-enriched fish oil (FO) and caloric restriction (CR) are nutritional therapeutic approaches that exert an important impact on brain function, behavior, memory, and neuroprotection. Here, we investigate the synergic effects of both therapeutic approaches combined (CR + FO) on behavior (memory, anxiety-like behavior, antidepressant-like behavior), as well as its association with hippocampal brain-derived neurotrophic factor (BDNF) concentrations. Adult male Wistar rats were divided into four dietary groups: Control group (C) - chow ad libitum; CR group - 30 % CR, considering C group food intake; FO group - FO-enriched chow ad libitum; and CR + FO group - FO-enriched 30 % CR chow. After 12 weeks of dietary treatment, behavioural analysis set was conducted, and hippocampal BDNF concentrations were measured. FO group presented anxiolytic-like and antidepressant-like behaviors as well as improved memory in the Morris' water maze. These effects were attenuated by the combined CR + FO treatment. FO group also presented higher BDNF concentrations. There was a positive association between the number of entries in the platform quadrant in the MWM and hippocampal BDNF concentrations (ß = 0.39; R² = 0.15; p = 0.042) and an inverse association between forced swim immobility time and BDNF concentrations (ß = -0.39; R² = 0.15; p = 0.041). Taken together, our data showed that the 12-week FO dietary treatment promoted anxiolytic-like and antidepressant-like behaviors as well as memory improvement, and these effects were associated with BDNF concentrations. Synergic effects of interventions attenuated FO-related behavioral responses and BDNF concentrations and probably reduced hippocampal neuroplasticity.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Anxiety/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Caloric Restriction , Depression/drug therapy , Fish Oils/pharmacology , Hippocampus/drug effects , Animals , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Fish Oils/therapeutic use , Hippocampus/metabolism , Rats , Rats, Wistar
3.
J Alzheimers Dis ; 73(2): 585-596, 2020.
Article in English | MEDLINE | ID: mdl-31815695

ABSTRACT

Familial hypercholesterolemia (FH) is a genetic disorder caused by dysfunction of low density lipoprotein receptors (LDLr), resulting in elevated plasma cholesterol levels. FH patients frequently exhibit cognitive impairment, a finding recapitulated in LDLr deficient mice (LDLr-/-), an animal model of FH. In addition, LDLr-/- mice are more vulnerable to the deleterious memory impact of amyloid-ß (Aß), a peptide linked to Alzheimer's disease. Here, we investigated whether the expression of proteins involved in Aß metabolism are altered in the brains of adult or middle-aged LDLr-/- mice. After spatial memory assessment, Aß levels and gene expression of LDLr related-protein 1, proteins involved in Aß synthesis, and apoptosis-related proteins were evaluated in prefrontal cortex and hippocampus. Moreover, the location and cell-specificity of apoptosis signals were evaluated. LDLr-/- mice presented memory impairment, which was more severe in middle-aged animals. Memory deficit in LDLr-/- mice was not associated with altered expression of proteins involved in Aß processing or changes in Aß levels in either hippocampus or prefrontal cortex. We further found that the expression of Bcl-2 was reduced while the expression of Bax was increased in both prefrontal cortex and hippocampus in 3- and 14-month-old LDLr-/-mice Finally, LDLr-/- mice presented increased immunoreactivity for activated caspase-3 in the prefrontal cortex and hippocampus. The activation of caspase 3 was predominantly associated with neurons in LDLr-/- mice. Cognitive impairment in LDLr-/- mice is thus accompanied by an exacerbation of neuronal apoptosis in brain regions related to memory formation, but not by changes in Aß processing or levels.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Apoptosis/genetics , Brain Chemistry/genetics , Receptors, LDL/deficiency , Receptors, LDL/genetics , Aging/metabolism , Aging/psychology , Animals , Caspase 3 , Cholesterol/blood , Gene Expression , Hippocampus/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Prefrontal Cortex/metabolism
4.
Neurotox Res ; 29(1): 118-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26464310

ABSTRACT

The classical motor symptoms of Parkinson's disease (PD) are preceded by non-motor symptoms in preclinical stages, including cognition impairment. The current drug treatment for PD is palliative and does not meet the clinical challenges of the disease, such as levodopa-induced dyskinesia, non-motor symptoms, and neuroprotection. We investigated the neuroprotective and disease-modifying potential of physical exercise in a preclinical animal model of PD. C57BL/6 mice (adult males) ran on a horizontal treadmill for 6 weeks (moderate intensity, 5 times/week) and were treated intranasally with 65 mg/kg of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Exercise did not protect against MPTP-induced nigrostriatal neurodegeneration or frontostriatal dopamine depletion but decreased striatal dopamine turnover. Exercise also attenuated procedural and working memory impairment and D2 receptor hypersensitivity in MPTP-treated mice. In summary, exercise improved dopaminergic neurotransmission and enhanced cognition in a preclinical animal model of PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cognition Disorders/chemically induced , Cognition Disorders/rehabilitation , Dopamine/metabolism , Neurotoxins/pharmacology , 3,4-Dihydroxyphenylacetic Acid , Animals , Brain/drug effects , Brain/metabolism , Catalepsy/chemically induced , Conditioning, Psychological/drug effects , Exercise Test , Exploratory Behavior/drug effects , Fear/drug effects , Homovanillic Acid , Locomotion/drug effects , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Tyrosine 3-Monooxygenase/metabolism
5.
Neurotoxicology ; 50: 28-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26215118

ABSTRACT

Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum.


Subject(s)
Cognition Disorders/chemically induced , Developmental Disabilities/chemically induced , Manganese/toxicity , Movement Disorders/etiology , Age Factors , Animals , Animals, Newborn , Brain/metabolism , Discrimination, Psychological/drug effects , Disease Models, Animal , Exploratory Behavior/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Male , Perceptual Disorders/chemically induced , Rats , Rats, Wistar , Recognition, Psychology/drug effects , Smell/drug effects , Sulfhydryl Compounds/metabolism
6.
Arch Toxicol ; 87(7): 1231-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23385959

ABSTRACT

While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects.


Subject(s)
Antioxidants/pharmacology , Basal Ganglia/drug effects , Behavior, Animal/drug effects , Chromans/pharmacology , Manganese Poisoning/drug therapy , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Age Factors , Animals , Animals, Newborn , Basal Ganglia/metabolism , Basal Ganglia/physiopathology , Caspases/metabolism , Disease Models, Animal , Enzyme Activation , Female , Male , Manganese Poisoning/etiology , Manganese Poisoning/metabolism , Manganese Poisoning/physiopathology , Manganese Poisoning/psychology , Phosphorylation , Rats , Rats, Wistar , Rotarod Performance Test , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
7.
PLoS One ; 7(3): e33057, 2012.
Article in English | MEDLINE | ID: mdl-22427945

ABSTRACT

Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.


Subject(s)
Basal Ganglia/drug effects , Basal Ganglia/metabolism , Environmental Exposure , Gene Expression Regulation, Developmental/drug effects , Manganese/toxicity , Psychomotor Performance/drug effects , Analysis of Variance , Animals , Basal Ganglia/growth & development , Blotting, Western , Caspases/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , MAP Kinase Signaling System/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...