Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 23(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34441165

ABSTRACT

Time series analysis comprises a wide repertoire of methods for extracting information from data sets. Despite great advances in time series analysis, identifying and quantifying the strength of nonlinear temporal correlations remain a challenge. We have recently proposed a new method based on training a machine learning algorithm to predict the temporal correlation parameter, α, of flicker noise (FN) time series. The algorithm is trained using as input features the probabilities of ordinal patterns computed from FN time series, xαFN(t), generated with different values of α. Then, the ordinal probabilities computed from the time series of interest, x(t), are used as input features to the trained algorithm and that returns a value, αe, that contains meaningful information about the temporal correlations present in x(t). We have also shown that the difference, Ω, of the permutation entropy (PE) of the time series of interest, x(t), and the PE of a FN time series generated with α=αe, xαeFN(t), allows the identification of the underlying determinism in x(t). Here, we apply our methodology to different datasets and analyze how αe and Ω correlate with well-known quantifiers of chaos and complexity. We also discuss the limitations for identifying determinism in highly chaotic time series and in periodic time series contaminated by noise. The open source algorithm is available on Github.

2.
Evolution ; 74(2): 434-446, 2020 02.
Article in English | MEDLINE | ID: mdl-31503329

ABSTRACT

Animal synchrony is found in phylogenetically distant animal groups, indicating behavioral adaptations to different selective pressures and in different signaling modalities. A notable example of synchronous display is found in fiddler crabs in that males wave their single enlarged claw during courtship. They present species-specific signals, which are composed of distinctive movement signatures. Given that synchronous waving has been reported for several fiddler crab species, the display pattern could influence the ability of a given species to sufficiently adjust wave timing to allow for synchrony. In this study, we quantified the wave displays of fiddler crabs to predict their synchronous behavior. We combined this information with the group's phylogenetic relationships to trace the evolution of display synchrony in an animal taxon. We found no phylogenetic signal in interspecific variation in predicted wave synchrony, which mirrors the general nonphylogenetic pattern of synchrony across animal taxa. Interestingly, our analyses show that the phenomenon of synchronization stems from the peculiarities of display pattern, mating systems, and the complexity of microhabitats. This is the first study to combine mathematical simulations and phylogenetic comparative methods to reveal how ecological factors and the mechanics of animal signals affect the evolution of the synchronous phenomena.


Subject(s)
Animal Communication , Biological Evolution , Brachyura/physiology , Life History Traits , Sexual Behavior, Animal , Animals , Australia , Brazil , Ecosystem , Male , Panama , Phylogeny
3.
J Theor Biol ; 368: 113-21, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25596516

ABSTRACT

In recent years, it became clear that a better understanding of the interactions among the main elements involved in the cancer network is necessary for the treatment of cancer and the suppression of cancer growth. In this work we propose a system of coupled differential equations that model brain tumour under treatment by chemotherapy, which considers interactions among the glial cells, the glioma, the neurons, and the chemotherapeutic agents. We study the conditions for the glioma growth to be eliminated, and identify values of the parameters for which the inhibition of the glioma growth is obtained with a minimal loss of healthy cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/pathology , Glioma/pathology , Models, Biological , Neuroglia/physiology , Neurons/physiology , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cell Communication/drug effects , Glioma/drug therapy , Humans , Neuroglia/drug effects , Neurons/drug effects
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066206, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19256924

ABSTRACT

Hyperchaos occurs in a dynamical system with more than one positive Lyapunov exponent. When the equations governing the time evolution of the dynamical system are known, the transition from chaos to hyperchaos can be readily obtained when the second largest Lyapunov exponent crosses zero. If the only information available on the system is a time series, however, such method is difficult to apply. We propose the use of recurrence quantification analysis of a time series to characterize the chaos-hyperchaos transition. We present results obtained from recurrence plots of coupled chaotic piecewise-linear maps and Chua-Matsumoto circuits, but the method can be applied as well to other systems, even when one does not know their dynamical equations.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 056209, 2002 May.
Article in English | MEDLINE | ID: mdl-12059682

ABSTRACT

We study the synchronization properties of a lattice of chaotic piecewise linear maps. The coupling strength decreases with the lattice distance in a power-law fashion. We obtain the Lyapunov spectrum of the coupled map lattice and investigate the relation between spatiotemporal chaos and synchronization of amplitudes and phases, using suitable numerical diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...