Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(21): 5220-5237, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38695162

ABSTRACT

The HIV attacks the immune system provoking an infection that is considered a global health challenge. Despite antiretroviral treatments being effective in reducing the plasma viral load in the blood to undetectable levels in people living with HIV (PLWH), the disease is not cured and has become chronic. This happens because of the existence of anatomical and cellular viral reservoirs, mainly located in the lymph nodes and gastrointestinal tract, which are composed of infected CD4+ T cells with a resting memory phenotype and inaccessible to antiretroviral therapy. Herein, a new therapeutic strategy based on nanotechnology is presented. Different combinations of antiretroviral drugs (bictegravir/tenofovir/emtricitabine and nevirapine/tenofovir/emtricitabine) and toll-like receptor agonists were encapsulated into metal-organic frameworks (MOFs) PCN-224 and ZIF-8. The encapsulation efficiencies of all the drugs, as well as their release rate from the carriers, were measured. In vitro studies about the cell viability, the hemocompatibility, and the platelet aggregation of the MOFs were carried out. Epifluorescence microscopy assays confirmed the ability of ZIF-8 to target a carboxyfluorescein probe inside HeLa cell lines and PBMCs. These results pave the way for the use of these structures to eliminate latent HIV reservoirs from anatomical compartments through the activation of innate immune cells, and a higher efficacy of the triplet combinations of antiretroviral drugs.


Subject(s)
Anti-HIV Agents , Biocompatible Materials , HIV Infections , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , HIV Infections/drug therapy , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HeLa Cells , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , HIV-1/drug effects , Particle Size , Cell Survival/drug effects , Surface Properties
2.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677627

ABSTRACT

We report the use of a carboxylated pyrrolidine-fused chlorin (TCPC) as a fluorescent probe for the determination of glutathione (GSH) in 7.4 pH phosphate buffer. TCPC is a very stable, highly emissive molecule that has been easily obtained from meso-tetrakis(4-methoxycarbonylphenyl) porphyrin (TCPP) through a 1,3-dipolar cycloaddition approach. First, we describe the coordination of TCPC with Hg(II) ions and the corresponding spectral changes, mainly characterized by a strong quenching of the chlorin emission band. Then, the TCPC-Hg2+ complex exhibits a significant fluorescence turn-on in the presence of low concentrations of the target analyte GSH. The efficacy of the sensing molecule was tested by using different TCPC:Hg2+ concentration ratios (1:2, 1:5 and 1:10) that gave rise to sigmoidal response curves in all cases with modulating detection limits, being the lowest 40 nM. The experiments were carried out under physiological conditions and the selectivity of the system was demonstrated against a number of potential interferents, including cysteine. Furthermore, the TCPC macrocycle did not showed a significant fluorescent quenching in the presence of other metal ions.


Subject(s)
Mercury , Porphyrins , Fluorescent Dyes/chemistry , Porphyrins/chemistry , Glutathione , Ions , Spectrometry, Fluorescence
3.
Foods ; 11(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35627047

ABSTRACT

Virgin olive oil (VOO) classification into quality categories determines its labeling and market price. This procedure involves performing a series of chemical-physical analyses and, ultimately, a sensory analysis through the panel test. This work explores the analysis of VOOs quality with an electronic olfactory system (EOS) and examines its abilities using the panel test as a reference. To do this, six commercial olive oils labelled as extra virgin were analyzed with an EOS and classified by three panels recognized by the International Olive Council. The organoleptic analysis of the oils by the panels indicated that most of the oils in the study were in fact not extra virgin. Besides this, the classifications showed inconsistencies between panels, needing statistical treatment to be used as a reference for the EOS training. The analysis of the same oils by the EOS and their subsequent statistical analysis by PCA revealed a good correlation between the first principal component and the olive oil quality from the panels using average scores. It also showed a more consistent classification than the panels. Overall, the EOS proved to be a cheaper, faster, and highly reliable method as a complement to the panel test for the olive oil classification.

4.
ACS Omega ; 5(12): 6299-6308, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258864

ABSTRACT

The aggregation of a free base porphyrin, meso-tetrakis(4-carboxyphenyl)porphyrin and its Zn(II) derivative have been studied at the air/water interface in the presence of a p-tert-butylcalyx[8]arene matrix. The mixed Langmuir films were obtained either by premixing the compounds (cospreading) or by sequential addition. The negative deviation from the additivity rule of the cospread films is indicative of a comparatively good miscibility that was further confirmed by Brewster angle microscopy. The images of the cospread mixed films showed a more homogeneous morphology in comparison with those of pure porphyrin that is attributed to a deeper and earlier self-aggregation state at the interface of the latter. These results were similar for both porphyrins and revealed the disaggregating effect of the calixarene matrix. The orientation and association of the porphyrins were studied by UV-visible reflection spectroscopy at the interface. A different aggregation behavior can be inferred from the resulting spectra, and a higher orientational freedom was observed when the molecules were less aggregated in mixed cospreaded films. The disaggregating effect was retained when the films were transferred to solid supports as demonstrated by UV-visible spectroscopy. Finally, the potential use of these Langmuir-Blodgett films as optical gas sensors was tested against ammonia and amine vapors. The changes in the spectrum in the presence of the volatile compounds are higher for the Zn-porphyrin. The presence of calixarene enhances the sensor response due to the higher accessibility of volatiles to disaggregated porphyrins in the mixed films. The resulting changes were mapped into a numerical matrix that can be transformed into a color pattern to easily discriminate among these gases.

5.
Anal Chem ; 91(24): 15853-15859, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31701735

ABSTRACT

Luminescent metal-organic frameworks (LMOFs) are promising materials for lighting and sensing applications. Herein, exposure of the highly luminescent Zn2(bpdc)2(bpee) MOF (H2bpdc = 4,4'-biphenyldicarboxylic acid and bpee = 1,2-bipyridylethene) to subppm amine contents turns on a new absorption band unambiguously ascribed to free bpee molecules concomitant with the gradual appearance of a new photoluminescence band at shorter wavelengths. These findings combined with Fourier-transform infrared spectra, powder X-ray diffraction and thermogravimetric analysis of exposed LMOF powders confirm that bpee ligands are exchanged by amines and released inside the LMOF, triggering absorption and luminescence features which can be exploited for highly sensitive amine recognition. This principle was demonstrated in mixed matrix membranes (MMMs) prepared by a simple solvent-free method consisting of mixing Zn2(bpdc)2(bpee) with dimethylvinyl-terminated dimethylsiloxane and dimethylhydrogen siloxane. This method enabled the production of free-standing, permeable, and highly transparent MMMs which showed enormous potential and sensitivity to the detection of amines in gas phase and aqueous medium.

6.
ACS Sens ; 3(9): 1627-1631, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30160467

ABSTRACT

We present here a cheap, fast, and highly selective dosimeter for the colorimetric detection of gaseous phosgene with an ultralow detection limit. The disposable device is based on Harrison's reagent supported into a porous nanocrystalline TiO2 matrix film. We exposed the films to phosgene streams while the absorbance was monitored by an optic fiber in a gas chamber. The pronounced spectral changes were unaffected by humidity and oxygen and permitted us to use the response rate at 464 nm as a very stable calibration signal for quantitative analysis purposes. The use of a specific sensing reaction guaranteed a very high selectivity of the device even against saturated vapors of primary interferences like halide gases and other oxidizing and volatile agents. With this simple method, whose response is compatible with affordable and efficient miniature LED-photodiode devices, we reach an ultralow limit of detection well below the ppm level.


Subject(s)
Phosgene/analysis , Benzaldehydes/chemistry , Calibration , Colorimetry/methods , Diphenylamine/chemistry , Gases/analysis , Gases/chemistry , Limit of Detection , Nanoparticles/chemistry , Phosgene/chemistry , Porosity , Titanium/chemistry
7.
Materials (Basel) ; 10(9)2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28841183

ABSTRACT

A novel technique for the creation of metal-organic framework (MOF) films based on soft-imprinting and their use as gas sensors was developed. The microporous MOF material [Zn2(bpdc)2(bpee)] (bpdc = 4,4'-biphenyldicarboxylate; bpee = 1,2-bipyridylethene) was synthesized solvothermally and activated by removing the occluded solvent molecules from its inner channels. MOF particles were characterized by powder X-ray diffraction and fluorescence spectroscopy, showing high crystallinity and intense photoluminescence. Scanning electron microscope images revealed that MOF crystals were mainly in the form of microneedles with a high surface-to-volume ratio, which together with the high porosity of the material enhances its interaction with gas molecules. MOF crystals were soft-imprinted into cellulose acetate (CA) films on quartz at different pressures. Atomic force microscope images of soft-imprinted films showed that MOF crystals were partially embedded into the CA. With this procedure, mechanically stable films were created, with crystals protruding from the CA surface and therefore available for incoming gas molecules. The sensing properties of the films were assessed by exposing them to saturated atmospheres of 2,4-dinitrotoluene, which resulted in a substantial quenching of the fluorescence after few seconds. The soft-imprinted MOF films on CA/quartz exhibit good sensing capabilities for the detection of nitroaromatics, which was attributed to the MOF sensitivity and to the novel and more efficient film processing method based on soft-imprinting.

8.
Materials (Basel) ; 10(2)2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28772484

ABSTRACT

The incorporation of a prototypical rosamine fluorescent dye from organic solutions into transparent and microstructured columnar TiO2 and SiO2 (MO2) thin films, prepared by evaporation at glancing angles (GAPVD), was evaluated. The aggregation of the adsorbed molecules, the infiltration efficiency and the adsorption kinetics were studied by means of UV-Vis absorption and fluorescence spectroscopies. Specifically, the infiltration equilibrium as well as the kinetic of adsorption of the emitting dye has been described by a Langmuir type adsorption isotherm and a pseudosecond order kinetic model, respectively. The anchoring mechanism of the rosamine to the MO2 matrix has been revealed by specular reflectance Fourier transform infrared spectroscopy and infiltration from aqueous solutions at different pH values. Finally, the sensing performance towards NO2 gas of optimized films has been assessed by following the changes of its fluorescence intensity revealing that the so-selected device exhibited improved sensing response compared to similar hybrid films reported in the literature.

9.
Sensors (Basel) ; 17(1)2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28025570

ABSTRACT

Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV-vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation-deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film.

10.
Sensors (Basel) ; 15(5): 11118-32, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25985159

ABSTRACT

The anchoring effect on free-base carboxyphenyl porphyrin films using TiO2 microstructured columns as a host matrix and its influence on NO2 sensing have been studied in this work. Three porphyrins have been used: 5-(4-carboxyphenyl)10,15,20-triphenyl-21H,23H-porphyrin (MCTPP); 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphyrin (p-TCPP); and 5,10,15,20-tetrakis(3-carboxyphenyl)-21H,23H-porphyrin (m-TCPP). The analysis of UV-Vis spectra of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 composite films has revealed that m-TCPP/TiO2 films are the most stable, showing less aggregation than the other porphyrins. IR spectroscopy has shown that m-TCPP is bound to TiO2 through its four carboxylic acid groups, while p-TCPP is anchored by only one or two of these groups. MCTPP can only be bound by one carboxylic acid. Consequently, the binding of p-TCPP and MCTPP to the substrate allows them to form aggregates, whereas the more fixed anchoring of m-TCPP reduces this effect. The exposure of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 films to NO2 has resulted in important changes in their UV-Vis spectra, revealing good sensing capabilities in all cases. The improved stability of films made with m-TCPP suggests this molecule as the best candidate among our set of porphyrins for the fabrication of NO2 sensors. Moreover, their concentration-dependent responses upon exposure to low concentrations of NO2 confirm the potential of m-TCPP as a NO2 sensor.


Subject(s)
Nitrogen Dioxide/analysis , Porphyrins/chemistry , Titanium/chemistry , Kinetics , Linear Models , Spectrophotometry, Ultraviolet
11.
Photochem Photobiol Sci ; 13(10): 1420-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25054889

ABSTRACT

A photochromic system based on dracoflavylium, a natural pigment extracted from Dragon's blood, a resin appearing in the injury parts of the tree Dracaena draco, is studied in water. The photochromism arises from the irradiation of the trans-chalcone, giving a mixture of flavylium cation/quinoidal base as a photoproduct via cis-chalcone and hemiketal. The performance of the photochromic system can be improved in the presence of (2-hydroxypropyl)-ß-cyclodextrin. A mathematical model to account for the details of the kinetics and thermodynamics of the system was deduced. The model is general for all the host-guest systems involving the flavylium network of chemical reactions with 1 : 1 stoichiometric association.

12.
J Colloid Interface Sci ; 354(2): 733-8, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21147483

ABSTRACT

In this work, surface properties of octadecylamine (ODA) monolayers in the presence of different concentrations of calf thymus DNA in the aqueous subphase covering a range of 2-8µM have been investigated. The increase of DNA concentration is accompanied by a marked increment in the expansion of the corresponding isotherms. In addition, there is a change in the profile of the isotherms ranging from an abrupt liquid-solid transition for the lipid monolayer on pure water to a slow condensation of the monolayer in a liquid state when DNA is added to the subphase, demonstrating the effective adsorption of the polynucleotide to the long chain amine monolayer. Additional phase transitions appear in the isotherms upon addition of sufficient amount of DNA, revealing the existence of specific processes such as folding or squeezing out of the DNA. This system is, however, highly reversible during compression-expansion cycles due to the strong interaction between the two components. These results are also supported by Brewster Angle Microscopy (BAM) images showing significant changes in the morphology of the film. Integral reflectivity of the BAM microscope has been used to study both isotherms themselves and the kinetic process of DNA inclusion into the lipid-like ODA monolayer. This parameter has been proven to be very effective for quantification of the monolayer processes showing high consistency with the compressibility and kinetics results.


Subject(s)
Amines/chemistry , DNA/chemistry , Adsorption , Air , Animals , Cattle , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...