Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
N Biotechnol ; 77: 12-19, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37295722

ABSTRACT

Data quality has recently become a critical topic for the research community. European guidelines recommend that scientific data should be made FAIR: findable, accessible, interoperable and reusable. However, as FAIR guidelines do not specify how the stated principles should be implemented, it might not be straightforward for researchers to know how actually to make their data FAIR. This can prevent life-science researchers from sharing their datasets and pipelines, ultimately hindering the progress of research. To address this difficulty, we developed the BIBBOX, which is a platform that supports researchers publishing their datasets and the associated software in a FAIR manner.


Subject(s)
Mobile Applications
2.
Front Hum Neurosci ; 16: 841312, 2022.
Article in English | MEDLINE | ID: mdl-35360289

ABSTRACT

Establishing the basic knowledge, methodology, and technology for a framework for the continuous decoding of hand/arm movement intention was the aim of the ERC-funded project "Feel Your Reach". In this work, we review the studies and methods we performed and implemented in the last 6 years, which build the basis for enabling severely paralyzed people to non-invasively control a robotic arm in real-time from electroencephalogram (EEG). In detail, we investigated goal-directed movement detection, decoding of executed and attempted movement trajectories, grasping correlates, error processing, and kinesthetic feedback. Although we have tested some of our approaches already with the target populations, we still need to transfer the "Feel Your Reach" framework to people with cervical spinal cord injury and evaluate the decoders' performance while participants attempt to perform upper-limb movements. While on the one hand, we made major progress towards this ambitious goal, we also critically discuss current limitations.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5909-5913, 2021 11.
Article in English | MEDLINE | ID: mdl-34892464

ABSTRACT

Riemannian tangent space methods offer state-of-the-art performance in magnetoencephalography (MEG) and electroencephalography (EEG) based applications such as brain-computer interfaces and biomarker development. One limitation, particularly relevant for biomarker development, is limited model interpretability compared to established component-based methods. Here, we propose a method to transform the parameters of linear tangent space models into interpretable patterns. Using typical assumptions, we show that this approach identifies the true patterns of latent sources, encoding a target signal. In simulations and two real MEG and EEG datasets, we demonstrate the validity of the proposed approach and investigate its behavior when the model assumptions are violated. Our results confirm that Riemannian tangent space methods are robust to differences in the source patterns across observations. We found that this robustness property also transfers to the associated patterns.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Magnetoencephalography , Space Simulation
4.
J Neural Eng ; 18(4): 046022, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33779576

ABSTRACT

For brain-computer interface (BCI) users, the awareness of an error is associated with a cortical signature known as an error-related potential (ErrP). The incorporation of ErrP detection into BCIs can improve their performance. OBJECTIVE: This work has three main aims. First, we investigate whether an ErrP classifier is transferable from able-bodied participants to participants with a spinal cord injury (SCI). Second, we test this generic ErrP classifier with SCI and control participants, in an online experiment without offline calibration. Third, we investigate the morphology of ErrPs in both groups of participants. APPROACH: We used previously recorded electroencephalographic data from able-bodied participants to train an ErrP classifier. We tested the classifier asynchronously, in an online experiment with 16 new participants: 8 participants with SCI and 8 able-bodied control participants. The experiment had no offline calibration and participants received feedback regarding the ErrP detections from the start. To increase the fluidity of the experiment, feedback regarding false positive ErrP detections was not presented to the participants, but these detections were taken into account in the evaluation of the classifier. The generic classifier was not trained with the user's brain signals. However, its performance was optimized during the online experiment by the use of personalized decision thresholds. The classifier's performance was evaluated using trial-based metrics, which considered the asynchronous detection of ErrPs during the entire trial's duration. MAIN RESULTS: Participants with SCI presented a non-homogenous ErrP morphology, and four of them did not present clear ErrP signals. The generic classifier performed better than chance in participants with clear ErrP signals, independently of the SCI (11 out of 16 participants). Three out of the five participants that obtained chance level results with the generic classifier would have not benefitted from the use of a personalized classifier. SIGNIFICANCE: This work shows the feasibility of transferring an ErrP classifier from able-bodied participants to participants with SCI, for asynchronous detection of ErrPs in an online experiment without offline calibration, which provided immediate feedback to the users.


Subject(s)
Brain-Computer Interfaces , Spinal Cord Injuries , Brain , Electroencephalography , Feedback , Humans , Spinal Cord Injuries/diagnosis
5.
Front Hum Neurosci ; 15: 635777, 2021.
Article in English | MEDLINE | ID: mdl-33716698

ABSTRACT

CYBATHLON is an international championship where people with severe physical disabilities compete with the aid of state-of-the-art assistive technology. In one of the disciplines, the BCI Race, tetraplegic pilots compete in a computer game race by controlling an avatar with a brain-computer interface (BCI). This competition offers a perfect opportunity for BCI researchers to study long-term training effects in potential end-users, and to evaluate BCI performance in a realistic environment. In this work, we describe the BCI system designed by the team Mirage91 for participation in the CYBATHLON BCI Series 2019, as well as in the CYBATHLON 2020 Global Edition. Furthermore, we present the BCI's interface with the game and the main methodological strategies, along with a detailed evaluation of its performance over the course of the training period, which lasted 14 months. The developed system was a 4-class BCI relying on task-specific modulations of brain rhythms. We implemented inter-session transfer learning to reduce calibration time, and to reinforce the stability of the brain patterns. Additionally, in order to compensate for potential intra-session shifts in the features' distribution, normalization parameters were continuously adapted in an unsupervised fashion. Across the aforementioned 14 months, we recorded 26 game-based training sessions. Between the first eight sessions, and the final eight sessions leading up to the CYBATHLON 2020 Global Edition, the runtimes significantly improved from 255 ± 23 s (mean ± std) to 225 ± 22 s, respectively. Moreover, we observed a significant increase in the classifier's accuracy from 46 to 53%, driven by more distinguishable brain patterns. Compared to conventional single session, non-adaptive BCIs, the inter-session transfer learning and unsupervised intra-session adaptation techniques significantly improved the performance. This long-term study demonstrates that regular training helped the pilot to significantly increase the distance between task-specific patterns, which resulted in an improvement of performance, both with respect to class separability in the calibration data, and with respect to the game. Furthermore, it shows that our methodological approaches were beneficial in transferring the performance across sessions, and most importantly to the CYBATHLON competitions.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2995-2998, 2020 07.
Article in English | MEDLINE | ID: mdl-33018635

ABSTRACT

Brain-computer interfaces (BCIs) provide more independence to people with severe motor disabilities but current BCIs' performance is still not optimal and often the user's intentions are misinterpreted. Error-related potentials (ErrPs) are the neurophysiological signature of error processing and their detection can help improving a BCI's performance.A major inconvenience of BCIs is that they commonly require a long calibration period, before the user can receive feedback of their own brain signals. Here, we use the data of 15 participants and compare the performance of a personalized ErrP classifier with a generic ErrP classifier. We concluded that there was no significant difference in classification performance between the generic and the personalized classifiers (Wilcoxon signed rank tests, two-sided and one-sided left and right). This results indicate that the use of a generic ErrP classifier is a good strategy to remove the calibration period of a ErrP classifier, allowing participants to receive immediate feedback of the ErrP detections.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Brain , Calibration , Feedback , Humans
7.
Neuroimage ; 218: 117000, 2020 09.
Article in English | MEDLINE | ID: mdl-32497788

ABSTRACT

Eye movements and blinks contaminate electroencephalographic (EEG) and magnetoencephalographic (MEG) activity. As the eye moves, the corneo-retinal dipole (CRD) and eyelid introduce potential/field changes in the M/EEG activity. These eye artifacts can affect a brain-computer interface and thereby impinge on neurofeedback quality. Here, we introduce the sparse generalized eye artifact subspace subtraction (SGEYESUB) algorithm that can correct these eye artifacts offline and in real time. We provide an open source reference implementation of the algorithm and the paradigm to obtain calibration data. Once the algorithm is fitted to calibration data (approx. 5 â€‹min), the eye artifact correction reduces to a matrix multiplication. We compared SGEYESUB with 4 state-of-the-art algorithms using M/EEG activity of 69 participants. SGEYESUB achieved the best trade-off between correcting the eye artifacts and preserving brain activity. Residual correlations between the corrected M/EEG channels and the eye artifacts were below 0.1. Error-related and movement-related cortical potentials were attenuated by less than 0.5 â€‹µV. Our results furthermore demonstrate that CRD and eyelid-related artifacts can be assumed to be stationary for at least 1-1.5 â€‹h, validating the feasibility of our approach in offline and online eye artifact correction.


Subject(s)
Algorithms , Artifacts , Electroencephalography/methods , Eye Movements , Magnetoencephalography/methods , Brain-Computer Interfaces , Humans , Signal Processing, Computer-Assisted
8.
Sci Rep ; 9(1): 17596, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772232

ABSTRACT

Error-related potentials (ErrPs) are the neural signature of error processing. Therefore, the detection of ErrPs is an intuitive approach to improve the performance of brain-computer interfaces (BCIs). The incorporation of ErrPs in discrete BCIs is well established but the study of asynchronous detection of ErrPs is still in its early stages. Here we show the feasibility of asynchronously decoding ErrPs in an online scenario. For that, we measured EEG in 15 participants while they controlled a robotic arm towards a target using their right hand. In 30% of the trials, the control of the robotic arm was halted at an unexpected moment (error onset) in order to trigger error-related potentials. When an ErrP was detected after the error onset, participants regained the control of the robot and could finish the trial. Regarding the asynchronous classification in the online scenario, we obtained an average true positive rate (TPR) of 70% and an average true negative rate (TNR) of 86.8%. These results indicate that the online asynchronous decoding of ErrPs was, on average, reliable, showing the feasibility of the asynchronous decoding of ErrPs in an online scenario.

9.
J Neural Eng ; 15(3): 036031, 2018 06.
Article in English | MEDLINE | ID: mdl-29557346

ABSTRACT

The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain-computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. OBJECTIVE: We developed a task in which subjects have continuous control of a cursor's position by means of a joystick. The cursor's position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. APPROACH: This paper studies the electroencephalographic (EEG)-measurable signatures caused by a loss of control over the cursor's trajectory, causing a target miss. MAIN RESULTS: In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-[Formula: see text], average TPR = 81.8% and average TNR = 96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-[Formula: see text], average TPR = 60.9% and average TNR = 58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. SIGNIFICANCE: The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Electroencephalography/methods , Feedback, Physiological/physiology , Signal Processing, Computer-Assisted , Adult , Female , Humans , Male , Photic Stimulation/methods , Random Allocation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...