Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(14): eaaz0421, 2020 04.
Article in English | MEDLINE | ID: mdl-32284978

ABSTRACT

Blue natural pigments are rare, especially among plants. However, flowering species that evolved to attract Hymenoptera pollinators are colored by blue anthocyanin-metal complexes. Plants lacking anthocyanins are pigmented by betalains but are unable to produce blue hues. By extending the π-system of betalains, we designed a photostable and metal-free blue dye named BeetBlue that did not show toxicity to human hepatic and retinal pigment epithelial cells and does not affect zebrafish embryonal development. This chiral dye can be conveniently synthesized from betalamic acid obtained from hydrolyzed red beetroot juice or by enzymatic oxidation of l-dopa. BeetBlue is blue in the solid form and in solution of acidified polar molecular solvents, including water. Its capacity to dye natural matrices makes BeetBlue the prototype of a new class of low-cost bioinspired chromophores suitable for a myriad of applications requiring a blue hue.


Subject(s)
Coloring Agents/chemistry , Coloring Agents/isolation & purification , Pigments, Biological/chemistry , Plants/chemistry , Animals , Chemical Phenomena , Color , Coloring Agents/analysis , Coloring Agents/toxicity , Density Functional Theory , Metals , Molecular Structure , Pigmentation , Spectrum Analysis , Zebrafish
2.
ACS Chem. Neurosci ; 7(8): p. 1130-1140, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14534

ABSTRACT

Kyotorphin (KTP) is an endogenous peptide with analgesic properties when administered into the central nervous system (CNS). Its amidated form (L-Tyr-L-Arg-NH2; KTP-NH2) has improved analgesic efficacy after systemic administration, suggesting blood-brain barrier (BBB) crossing. KTP-NH2 also has anti-inflammatory action impacting on microcirculation. In this work, selected derivatives of KTP-NH2 were synthesized to improve lipophilicity and resistance to enzymatic degradation while introducing only minor changes in the chemical structure: N-terminal methylation and/or use of D amino acid residues. Intravital microscopy data show that KTP-NH2 having a D-Tyr residue, KTP-NH2-DL, efficiently decreases the number of leukocyte rolling in a murine model of inflammation induced by bacterial lipopolysaccharide (LPS): down to 46% after 30 min with 96 mu M KTP-NH2-DL. The same molecule has lower ability to permeate membranes (relative permeability of 0.38) and no significant activity in a behavioral test which evaluates thermal nociception (hot-plate test). On the contrary, methylated isomers at 96 mu M increase leukocyte rolling up to nearly 5-fold after 30 min, suggesting a proinflammatory activity. They have maximal ability to permeate membranes (relative permeability of 0.8) and induce long-lasting antinociception


Subject(s)
Anesthesiology , Pharmacology , Allergy and Immunology
4.
Amino Acids ; 48(1): p. 307-318, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14037

ABSTRACT

Recently, a designed class of efficient analgesic drugs derived from an endogenous neuropeptide, kyotorphin (KTP, Tyr-Arg) combining C-terminal amidation (KTP-NH2) and N-terminal conjugation to ibuprofen (Ib), IbKTP-NH2, was developed. The Ib moiety is an enhancer of KTP-NH2 analgesic action. In the present study, we have tested the hypothesis that KTP-NH2 is an enhancer of the Ib anti-inflammatory action. Moreover, the impact of the IbKTP-NH2 conjugation on microcirculation was also evaluated by a unified approach based on intravital microscopy in the murine cremasteric muscle. Our data show that KTP-NH2 and conjugates do not cause damage on microcirculatory environment and efficiently decrease the number of leukocyte rolling induced by lipopolysaccharide (LPS). Isothermal titration calorimetry showed that the drugs bind to LPS directly thus contributing to LPS aggregation and subsequent elimination. In a parallel study, molecular dynamics simulations and NMR data showed that the IbKTP-NH2 tandem adopts a preferential stretched conformation in lipid bilayers and micelles, with the simulations indicating that the Ib moiety is anchored in the hydrophobic core, which explains the improved partition of IbKTP-NH2 to membranes and the permeability of lipid bilayers to this conjugate relative to KTP-NH2. The ability to bind glycolipids concomitant to the anchoring in the lipid membranes through the Ib residue explains the analgesic potency of IbKTP-NH2 given the enriched glycocalyx of the blood-brain barrier cells. Accumulation of IbKTP-NH2 in the membrane favors both direct permeation and local interaction with putative receptors as the location of the KTP-NH2 residue of IbKTP-NH2 and free KTP-NH2 in lipid membranes is the same


Subject(s)
Pharmacology , Anesthesiology
5.
Toxicon ; 115: p. 70-80, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13713

ABSTRACT

Gender related variation in the molecular composition of venoms and secretions have been described for some animal species, and there are some evidences that the difference in the toxin (s) profile among males and females may be related to different physiopathological effects caused by the envenomation by either gender. In order to investigate whether this same phenomenon occurs to the toadfish Thalassophryne maculosa, we have compared some biological and biochemical properties of female and male venoms. Twenty females and males were collected in deep waters of the La Restinga lagoon (Venezuela) and, after protein concentration assessed, the induction of toxic activities in mice and the biochemical properties were analyzed. Protein content is higher in males than in females, which may be associated to a higher size and weight of the male body. In vivo studies showed that mice injected with male venoms presented higher nociception when compared to those injected with female venoms, and both venoms induced migration of macrophages into the paw of mice. On the other hand, mice injected with female venoms had more paw edema and extravasation of Evans blue in peritoneal cavity than mice injected with male venoms. We observed that the female venoms had more capacity for necrosis induction when compared with male venoms. The female samples present a higher proteolytic activity then the male venom when gelatin, casein and FRETs were used as substrates. Evaluation of the venoms of females and males by SDS-PAGE and chromatographic profile showed that, at least three components (present in two peaks) are only present in males. Although the severity of the lesion, characterized by necrosis development, is related with the poisoning by female specimens, the presence of exclusive toxins in the male venoms could be associated with the largest capacity of nociception induction by this sample. (C) 2016 Elsevier Ltd. All rights reserved.


Subject(s)
Toxicology , Biochemistry
7.
International Immunopharmacology ; 11(10): 1546-1556, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063595

ABSTRACT

Considerable efforts are currently focused on the biology of DC in view of their possible clinical use as adjuvant for the generation of antigen-specific immunity and lifelong immunologic memory or for the treatment of tumors. We assessed the role of Nattectin a C-type lectin identified in the Thalassophryne nattereri fish venom in DC maturation. Nattectin induced a significant neutrophilic recruitment into peritoneal cavity of mice, followed by macrophages, with lipidic mediators and IL-12 p70 synthesis. Macrophages derived from 7 day-Nattectin mice were CD11c + CD11blowLy6 highF4/80Rhigh and express high levels of MHC class II and CD80 molecules. Culture of peritoneal exudates derived macrophages from 7 day Nattectin-mice and immature BMDCs with Nattectin markedly increased the surface expression of CD40, CD80, CD86, and MHC class II in a dose-dependent manner, and the production of MMP-2 and MMP-9 distributed in nucleus and cytoplasm of cells, that was associated with strong activity in the culture supernatant. Nattectin treated DCs secreted IL-12 p70 and IL-10. The Nattectin-treated BMDC or macrophage-derived DCs were highly efficient at Ag capture. The specific immune response elicited by Nattectin was characterized by the production of specific antibodies IgG1 and mainly IgG2a with IL-10 and IFN-ã synthesis by splenic cells. These results enable us to address that Nattectin induces the recruitment of Ly6Chigh monocytes into the peritoneum, which exhibit a pro-inflammatory profile, where they differentiate into proliferating F4/80Rhigh macrophages. Macrophage-derived DCs mature in the presence of the cytokine milieu generated against Nattectin, exhibiting T cell co-stimulatory molecule expression and induced a Th1 polarized response.


Subject(s)
Male , Female , Humans , Animals , Mice , Rats , Fishes , Fish Venoms , Dendritic Cells , Lectins, C-Type
8.
Biochem. pharmacol ; 81(6): 736-742, Dec 24, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060809

ABSTRACT

Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venomglands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme(ACE) described. Bj-PRO-5a (

Subject(s)
Mice , Oligopeptides/analysis , Oligopeptides/antagonists & inhibitors , Snake Venoms/analysis , Bothrops , Drugs, Investigational/analysis , Drugs, Investigational/therapeutic use , Receptors, Muscarinic/analysis , Receptors, Muscarinic/biosynthesis , Receptors, Muscarinic/therapeutic use
9.
J. venom. anim. toxins incl. trop. dis ; 15(1): 125-135, 2009. ilus, graf
Article in English | LILACS | ID: lil-508235

ABSTRACT

Thalassophryne nattereri (niquim) is a venomous fish responsible for numerous accidents involving fishermen in northern and northeastern Brazil. The aim of the present investigation was to evaluate the action of antivenom on renal effects caused by Thalassophryne nattereri venom. Isolated kidneys of Wistar rats were perfused with a previously dialyzed Krebs-Henseleit solution containing 6 g% bovine serum albumin. The antivenom action was studied through perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). The niquim venom (1 miug/mL), the antivenom alone (1 miug/mL) or the venom incubated with antivenom were added to the system 30 minutes after the beginning of each perfusion. Previous works have shown venom induced-alterations of renal function parameters. In the isolated rat Kidney, T. nattereri venom (1 miug/mL) increased the perfusion pressure and renal vascular resistance at 60, 90 and 120 minutes. UF and GFR also increased at 60, 90 and 120 minutes when compared with the control group; however, no effects were observed on the percent of sodium (% TNa more control equal 81.1 more or less 0.86; % TNa more 60 equal 78.04 more or less 1.18; % TNa more 90 equal -5.16 more or less 3.34; %TNa more 120 equal 79.49 more or less 0.87) and potassium (%TKcontrol equal 72.29 more or less 1.12; %TK more 60 equal 75.41 more or less 0.65; % TK more 90 equal 71.23 more or less 2.55; % TK more 120 equal 76.62 more or less 1.04) tubular transporto. The administration of the antivenom (1 miug/mL) incubated with venom (1 miug/mL) reduced the changes in PP, RVR, UF and GFR provoked by Thalassophryne nattereri venom. The group perfused with venom alone showed a moderate deposit of a proteinaceous material in the tubules and urinary space.(...)


Subject(s)
Animals , Male , Rats , Antivenins , Kidney/anatomy & histology , Kidney/pathology , Fish Venoms/antagonists & inhibitors , Fish Venoms/toxicity
10.
J. venom. anim. toxins incl. trop. dis ; 15(4): 633-652, 2009. ilus, tab
Article in English | LILACS | ID: lil-532750

ABSTRACT

Amphibian skin secretions are a source of potential new drugs with medical and biotechnological applications. Rich in peptides produced by holocrine-type serous glands in the integument, these secretions play different roles, either in the regulation of physiological skin functions or in the defense against predators or microorganisms. The aim of the present work was to identify novel peptides with bradykinin-like structure and/or activity present in the skin of Phyllomedusa nordestina. In order to achieve this goal, the crude skin secretion of this frog was pre-fractionated by solid phase extraction and separated by reversed-phase chromatography. The fractions were screened for low-molecular-mass peptides and sequenced by mass spectrometry. It was possible to identify three novel bradykinin-related peptides, namely: KPLWRL-NH2 (Pnor 3), RPLSWLPK (Pnor 5) and VPPKGVSM (Pnor 7) presenting vascular activities as assessed by intravital microscopy. Pnor 3 and Pnor 7 were able to induce vasodilation. On the other hand, Pnor 5 was a potent vasoconstrictor. These effects were reproduced by their synthetic analogues.


Subject(s)
Animals , Male , Mice , Anura , Bradykinin , Peptides , Peptides/therapeutic use , Mass Spectrometry
11.
Toxicon ; 51(1): 54-65, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17889921

ABSTRACT

Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/chemistry , Metalloendopeptidases/pharmacology , Metalloproteases/pharmacology , Amino Acid Sequence , Animals , Benchmarking , Blood Coagulation Factors , Cells, Cultured , Crotalid Venoms/pharmacology , Endothelial Cells/drug effects , Hemorrhage/chemically induced , Humans , Metalloendopeptidases/chemistry , Metalloproteases/chemistry , Mice , Molecular Sequence Data , Bothrops jararaca Venom
12.
Toxicon ; 49(7): 982-94, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17382362

ABSTRACT

Herein we compared the biological activities of Bothrops insularis and Bothrops jararaca venoms as well as their neutralization by polyspecific Bothrops antivenom (PBA). On account of that, we investigated their antigenic cross-reactivity and the neutralization of lethal, myotoxic and defibrinating activities by polyspecific and species-specific antivenoms. Silver-stained SDS-PAGE gels evidenced many common bands particularly above 47 kDa between B. jararaca and B. insularis venoms. However, some protein bands between 46 and 28 kDa were observed exclusively in B. jararaca venom. Both venoms presented gelatinolytic, caseinolytic, fibrinogenolytic and phospholipase A(2) activities. No hyaluronidase activity was detected in both venoms by zymography. Polyspecific and species-specific antivenoms showed similar titers to B. jararaca and B. insularis venoms by ELISA, and recognized similar components by immunoblotting. The PBA was effective in neutralizing the lethal, myotoxic and defibrinating activities of both venoms as well as to abrogate microcirculatory disturbances induced by B. insularis venom. No statistically significant difference was observed for minimal hemorrhagic doses between both venoms. Antigenic cross-reactivity was evident between both venoms. Since toxic and enzymatic activities were similar, we speculate that B. insularis venoms can induce a local damage in humans comparable to that observed in other Bothrops venoms. Besides, the PBA was effective in neutralizing the toxic activities of B. insularis venom.


Subject(s)
Antivenins/pharmacology , Bothrops , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/chemistry , Animals , Blotting, Western , Crotalid Venoms/enzymology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Male , Mice , Microcirculation/drug effects
13.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484461

ABSTRACT

Purification of a lectin from Bothrops jararacussu venom (BjcuL) was carried out using agarose-D-galactose affinity gel. MALDI-TOF gave a major signal at m/z 32028, suggesting the presence of a dimmer composed of two identical subunits. Divalent cations were required for the lectin activity, as complete absence of such ions reduced hemagglutination. BjcuL was more effective at neutral pH and showed total loss of activity at pH values below 4.0 and above 9.0. Its agglutinating activity remained stable at 25°C until 60min, but increased when at 35°C for at least 15min. Adhesion assays to extracellular matrix (ECM) glycoproteins showed that the biotinylated lectin (0.039-5.0µg/100µl) was capable of binding to fibronectin and vitronectin in a dose-dependent manner. The binding was partially inhibited in the presence of D-galactose. BjcuL (1.25-10µg/30µl) potential was investigated for leukocyte rolling and adhesion to endothelial cells in living microvessels using intravital microscopy, which showed that it induced a dose-dependent increase in rolling and adherence of leukocytes, acting directly on endothelial cells of postcapillary venules. The specific association between lectins and their ligands, either on the cell surface or on the ECM, is related to a variety of biological processes. The complementary characterization of BjcuL, shown here, is useful to further understand the venom effects and as a background for future investigation for therapeutic strategies.

14.
J. venom. anim. toxins incl. trop. dis ; 13(4): 782-799, 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-471141

ABSTRACT

Purification of a lectin from Bothrops jararacussu venom (BjcuL) was carried out using agarose-D-galactose affinity gel. MALDI-TOF gave a major signal at m/z 32028, suggesting the presence of a dimmer composed of two identical subunits. Divalent cations were required for the lectin activity, as complete absence of such ions reduced hemagglutination. BjcuL was more effective at neutral pH and showed total loss of activity at pH values below 4.0 and above 9.0. Its agglutinating activity remained stable at 25°C until 60min, but increased when at 35°C for at least 15min. Adhesion assays to extracellular matrix (ECM) glycoproteins showed that the biotinylated lectin (0.039-5.0µg/100µl) was capable of binding to fibronectin and vitronectin in a dose-dependent manner. The binding was partially inhibited in the presence of D-galactose. BjcuL (1.25-10µg/30µl) potential was investigated for leukocyte rolling and adhesion to endothelial cells in living microvessels using intravital microscopy, which showed that it induced a dose-dependent increase in rolling and adherence of leukocytes, acting directly on endothelial cells of postcapillary venules. The specific association between lectins and their ligands, either on the cell surface or on the ECM, is related to a variety of biological processes. The complementary characterization of BjcuL, shown here, is useful to further understand the venom effects and as a background for future investigation for therapeutic strategies.


Subject(s)
Animals , Extracellular Matrix , Leukocytes , Lectins, C-Type/isolation & purification , Crotalid Venoms/toxicity , Cell Adhesion
15.
Toxicon ; 47(5): 591-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16564063

ABSTRACT

Jararhagin is a multi-domain SVMP from Bothrops jararaca venom comprising catalytic, disintegrin-like and cysteine-rich domains, which cause a local reaction manifested by hemorrhage, edema, cytokine release and inflammatory cell recruitment. In this study, the importance of disintegrin-like/cysteine-rich domains of jararhagin was addressed by analyzing the effects of jararhagin-C, which lacks the catalytic domain, in induction of leukocyte rolling and release of pro-inflammatory cytokines. Jararhagin-C was isolated from B. jararaca venom conserving the same ability of complete jararhagin molecule in inhibiting collagen-induced platelet-aggregation. Treatment of trans-illuminated cremaster muscle in vivo with jararhagin-C increased number of rolling leukocytes (approximately 250%) in post-capillary venules in all periods analyzed, without interfering with microvasculature haemodynamic, like vessel diameter, the erythrocyte speed or the blood flow rate. The release of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 was significantly enhanced in the local of jararhagin-C injection, showing the maximum levels in periods between 2 and 4 h after treatment. Besides the action of jararhagin-C, the presence of the inactivated catalytic domain in o-phenanthrolin-treated jararhagin was related to a higher increase in the number of rolling leukocytes. Moreover, the levels of IL-6 and IL-1beta induced by catalytically active jararhagin were higher than those induced by jararhagin-C. In conclusion, our findings suggest that the disintegrin-like/cysteine-rich domains of jararhagin are sufficient to locally activate the early events of an acute inflammatory response as leukocyte rolling and pro-inflammatory cytokine release and this action may add to the effect of catalysis, which enhances the primary cell activation.


Subject(s)
Crotalid Venoms/chemistry , Crotalid Venoms/toxicity , Cysteine/chemistry , Disintegrins/chemistry , Inflammation/chemically induced , Metalloendopeptidases/chemistry , Metalloendopeptidases/toxicity , Animals , Bothrops/metabolism , Catalytic Domain , Cytokines , Endothelium, Vascular/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Leukocyte Rolling/drug effects , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology , Platelet Aggregation Inhibitors , Time Factors , Venules , Bothrops jararaca Venom
16.
Biochimie ; 88(6): 693-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16488069

ABSTRACT

Thalassophryne nattereri (niquim) is a venomous fish found on the northern and northeastern coasts of Brazil. Every year, hundreds of humans are affected by the poison, which causes excruciating local pain, edema, and necrosis, and can lead to permanent disabilities. In experimental models, T. nattereri venom induces edema and nociception, which are correlated to human symptoms and dependent on venom kininogenase activity; myotoxicity; impairment of blood flow; platelet lysis and cytotoxicity on endothelial cells. These effects were observed with minute amounts of venom. To characterize the primary structure of T. nattereri venom toxins, a list of transcripts within the venom gland was made using the expressed sequence tag (EST) strategy. Here we report the analysis of 775 ESTs that were obtained from a directional cDNA library of T. nattereri venom gland. Of these ESTs, 527 (68%) were related to sequences previously described. These were categorized into 10 groups according to their biological functions. Sequences involved in gene and protein expression accounted for 14.3% of the ESTs, reflecting the important role of protein synthesis in this gland. Other groups included proteins engaged in the assembly of disulfide bonds (0.5%), chaperones involved in the folding of nascent proteins (1.4%), and sequences related to clusterin (1.5%), as well as transcripts related to calcium binding proteins (1.0%). We detected a large cluster (1.3%) related to cocaine- and amphetamine-regulated transcript (CART), a peptide involved in the regulation of food intake. Surprisingly, several retrotransposon-like sequences (1.0%) were found in the library. It may be that their presence accounts for some of the variation in venom toxins. The toxin category (18.8%) included natterins (18%), which are a new group of kininogenases recently described by our group, and a group of C-type lectins (0.8%). In addition, a considerable number of sequences (32%) was not related to sequences in the databases, which indicates that a great number of new toxins and proteins are still to be discovered from this fish venom gland.


Subject(s)
Expressed Sequence Tags , Fish Venoms/genetics , Fishes, Poisonous/genetics , Gene Expression Profiling , Transcription, Genetic/genetics , Amino Acid Sequence , Animals , Calcium-Binding Proteins , DNA, Complementary/genetics , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Venoms/chemistry , Humans , Lectins, C-Type , Molecular Chaperones , Molecular Sequence Data , Sequence Analysis, DNA
17.
Biochimie ; 88(6): 693-699, 2006.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060831

ABSTRACT

Thalassophryne nattereri (niquim) is a venomous fish found on the northern and northeastern coasts of Brazil. Every year, hundreds of humans are affected by the poison, which causes excruciating local pain, edema, and necrosis, and can lead to permanent disabilities. In experimental models, T. nattereri venom induces edema and nociception, which are correlated to human symptoms and dependent on venom kininogenase activity; myotoxicity; impairment of blood flow; platelet lysis and cytotoxicity on endothelial cells. These effects were observed with minute amounts of venom. To characterize the primary structure of T. nattereri venom toxins, a list of transcripts within the venom gland was made using the expressed sequence tag (EST) strategy. Here we report the analysis of 775 ESTs that were obtained from a directional cDNA library of T. nattereri venom gland.


Subject(s)
Animals , Expressed Sequence Tags , Fishes, Poisonous/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Amino Acid Sequence/genetics , Fish Venoms/genetics , Fish Venoms/chemistry , Sequence Analysis, DNA , Gene Expression Profiling , Calcium-Binding Proteins
18.
Biochimie ; 87(8): 687-99, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16054523

ABSTRACT

A novel family of proteins with kininogenase activity and unique primary structure was characterized using combined pharmacological, proteomic and transcriptomic approaches of Thalassophryne nattereri fish venom. The major venom components were isolated and submitted to bioassays corresponding to its main effects: nociception and edema. These activities were mostly located in one fraction (MS3), which was further fractionated. The isolated protein, named natterin, was able to induce edema, nociception and cleave human kininogen and kininogen-derived synthetic peptides, releasing kallidin (Lys-bradykinin). The enzymatic digestion was inhibited by kallikrein inhibitors as Trasylol and TKI. Natterin N-terminal peptide showed no similarity with already known proteins present in databanks. Primary structure of natterin was obtained by a transcriptomic approach using a representative cDNA library constructed from T. nattereri venom glands. Several expressed sequence tags (ESTs) were obtained and processed by bioinformatics revealing a major group (18%) of related sequences unknown to gene or protein sequence databases. This group included sequences showing the N-terminus of isolated natterin and was named Natterin family. Analysis of this family allowed us to identify five related sequences, which we called natterin 1-4 and P. Natterin 1 and 2 sequences include the N-terminus of the isolated natterin. Furthermore, internal peptides of natterin 1-3 were found in major spots of whole venom submitted to mass spectrometry/2DGE. Similarly to the ESTs, the complete sequences of natterins did not show any significant similarity with already described tissue kallikreins, kininogenases or any proteinase, all being entirely new. These data present a new task for the knowledge of the action of kininogenases and may help in understanding the mechanisms of T. nattereri fish envenoming, which is an important medical problem in North and Northeast of Brazil.


Subject(s)
Batrachoidiformes/metabolism , Fish Venoms/isolation & purification , Kallikreins/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Chromatography, Gel , Electrophoresis, Gel, Two-Dimensional , Fish Venoms/chemistry , Fishes, Poisonous , Gene Library , Kallikreins/chemistry , Molecular Sequence Data , Sequence Alignment
19.
Biochimie ; 87(8): 687-699, aug.2005.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060829

ABSTRACT

A novel family of proteins with kininogenase activity and unique primary structure was characterized using combined pharmacological, proteomic and transcriptomic approaches of Thalassophryne nattereri fish venom. The major venom components were isolated and submitted to bioassays corresponding to its main effects: nociception and edema. These activities were mostly located in one fraction (MS3), which was further fractionated. The isolated protein, named natterin, was able to induce edema, nociception and cleave human kininogen and kininogen-derived synthetic peptides, releasing kallidin (Lys-bradykinin). The enzymatic digestion was inhibited by kallikrein inhibitors as Trasylol and TKI. Natterin N-terminal peptide showed no similarity with already known proteins present in databanks. Primary structure of natterin was obtained by a transcriptomic approach using a representative cDNA library constructed from T. nattereri venom glands. Several expressed sequence tags (ESTs) were obtained and processed by bioinformatics revealing a major group (18%) of related sequences unknown to gene or protein sequence databases. This group included sequences showing the N-terminus of isolated natterin and was named Natterin family. Analysis of this family allowed us to identify five related sequences, which we called natterin 1-4 and P. Natterin 1 and 2 sequences include the N-terminus of the isolated natterin. Furthermore, internal peptides of natterin 1-3 were found in major spots of whole venom submitted to mass spectrometry/2DGE. Similarly to the ESTs, the complete sequences of natterins did not show any significant similarity with already described tissue kallikreins, kininogenases or any proteinase, all being entirely new. These data present a new task for the knowledge of the action of kininogenases and may help in understanding the mechanisms of T. nattereri fish envenoming, which is an important medical problem in North and Northeast of Brazil.


Subject(s)
Animals , Batrachoidiformes/metabolism , Kallikreins/isolation & purification , Kallikreins/chemistry , Fishes, Poisonous/classification , Fish Venoms/isolation & purification , Fish Venoms/chemistry , Gene Library , Brazil , Chromatography, Gel , Molecular Sequence Data , Electrophoresis, Gel, Two-Dimensional , Proteins , Amino Acid Sequence
20.
Toxicon ; 44(6): 609-16, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15501286

ABSTRACT

The composition of the crotalic venom and the immunochemistry and/or pathophysiological characterization and main components were well studied. However, few studies have been carried out to investigate the effect of toxins of this venom on the development of the immune response. The objective of this work was to find out if venom or crotoxin of Crotalus durissus terrificus was able to modulate the immune response through its ability to change the mediators involved in the immune response by an unrelated antigen. We observed in the murine model, that venom as well as crotoxin have inhibitory effect on splenic cells proliferation induced by Con-A. Moreover, CB did not inhibit the proliferative response, suggesting that the integrity of crotoxin complex is necessary for the development of this phenomenon. Moreover, we showed that the effect on cellular proliferation was unrelated to cytotoxicity activity. We also observed that venom or crotoxin inhibited cytokine release induced in HSA immunised mice, mainly IL-2, IL-4 and IL-10, however, crotoxin did not inhibit the release of IFN-gamma. The involvement of T or B cells in the suppressive effect of venom was evaluated through the transference of purified splenic cells from venom-mice to normal mice that also produced low IgG1 anti-HSA levels, indicating the participation of these cells in this process. Mechanism of action of the crotalic venom on development of immune response to an unrelated antigen is much more complex, therefore it must not only involve the interaction of distinct cellular populations, but activation or inhibition of signalling proteins, need to be further investigated.


Subject(s)
Crotalid Venoms/toxicity , Crotalus , Crotoxin/toxicity , Immune Tolerance/drug effects , Immunity, Cellular/drug effects , Animals , Cell Proliferation/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Interferon-gamma/metabolism , Lymphocytes/immunology , Mice , Mice, Inbred BALB C , Receptors, Concanavalin A/metabolism , Serum Albumin/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...