Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Fetal Neonatal Med ; 25(4): 101146, 2020 08.
Article in English | MEDLINE | ID: mdl-33164775

ABSTRACT

The fetus can deploy a local or systemic inflammatory response when exposed to microorganisms or, alternatively, to non-infection-related stimuli (e.g., danger signals or alarmins). The term "Fetal Inflammatory Response Syndrome" (FIRS) was coined to describe a condition characterized by evidence of a systemic inflammatory response, frequently a result of the activation of the innate limb of the immune response. FIRS can be diagnosed by an increased concentration of umbilical cord plasma or serum acute phase reactants such as C-reactive protein or cytokines (e.g., interleukin-6). Pathologic evidence of a systemic fetal inflammatory response indicates the presence of funisitis or chorionic vasculitis. FIRS was first described in patients at risk for intraamniotic infection who presented preterm labor with intact membranes or preterm prelabor rupture of the membranes. However, FIRS can also be observed in patients with sterile intra-amniotic inflammation, alloimmunization (e.g., Rh disease), and active autoimmune disorders. Neonates born with FIRS have a higher rate of complications, such as early-onset neonatal sepsis, intraventricular hemorrhage, periventricular leukomalacia, and death, than those born without FIRS. Survivors are at risk for long-term sequelae that may include bronchopulmonary dysplasia, neurodevelopmental disorders, such as cerebral palsy, retinopathy of prematurity, and sensorineuronal hearing loss. Experimental FIRS can be induced by intra-amniotic administration of bacteria, microbial products (such as endotoxin), or inflammatory cytokines (such as interleukin-1), and animal models have provided important insights about the mechanisms responsible for multiple organ involvement and dysfunction. A systemic fetal inflammatory response is thought to be adaptive, but, on occasion, may become dysregulated whereby a fetal cytokine storm ensues and can lead to multiple organ dysfunction and even fetal death if delivery does not occur ("rescued by birth"). Thus, the onset of preterm labor in this context can be considered to have survival value. The evidence so far suggests that FIRS may compound the effects of immaturity and neonatal inflammation, thus increasing the risk of neonatal complications and long-term morbidity. Modulation of a dysregulated fetal inflammatory response by the administration of antimicrobial agents, anti-inflammatory agents, or cell-based therapy holds promise to reduce infant morbidity and mortality.


Subject(s)
Chorioamnionitis/immunology , Chorioamnionitis/physiopathology , Obstetric Labor, Premature/physiopathology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/physiopathology , Adult , Chorioamnionitis/diagnosis , Chorioamnionitis/therapy , Cytokines/blood , Female , Fetus , Humans , Infant, Newborn , Infant, Premature, Diseases/immunology , Infant, Premature, Diseases/physiopathology , Interleukin-6/blood , Pregnancy , Systemic Inflammatory Response Syndrome/diagnosis
2.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L516-23, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25150061

ABSTRACT

Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could identify novel BPD-related genes and pathways. Newborn C57BL/6 mice were exposed to 100% oxygen for 10 days, and whole lung tissue RNA was used for high-throughput, sequencing-based transcriptomic analysis (RNA-Seq). Significance Analysis of Microarrays and Ingenuity Pathway Analysis were used to identify genes and pathways affected. Expression patterns for selected genes were validated by qPCR. Mechanistic relationships between genes were further tested in cultured mouse lung epithelial cells. We identified 300 genes significantly and substantially affected following acute neonatal hyperoxia. Canonical pathways dysregulated in hyperoxia lungs included nuclear factor (erythryoid-derived-2)-like 2-mediated oxidative stress signaling, p53 signaling, eNOS signaling, and aryl hydrocarbon receptor (Ahr) pathways. Cluster analysis identified Ccnd1, Cdkn1a, and Ahr as critical regulatory nodes in the response to hyperoxia, with Ahr serving as the major effector node. A mechanistic role for Ahr was assessed in lung epithelial cells, and we confirmed its ability to regulate the expression of multiple hyperoxia markers, including Cdkn1a, Pdgfrb, and A2m. We conclude that a global assessment of gene regulation in the acute neonatal hyperoxia model of BPD-like pathology has identified Ahr as one driver of gene dysregulation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hyperoxia/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcriptome , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/genetics , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Cell Line , Cluster Analysis , Gene Expression Regulation , Gene Regulatory Networks , Genome , Humans , Hyperoxia/genetics , Lung/metabolism , Mice , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...