Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930823

ABSTRACT

Propolis is a resinous bee product with a very complex composition, which is dependent upon the plant sources that bees visit. Due to the promising antimicrobial activities of red Brazilian propolis, it is paramount to identify the compounds responsible for it, which, in most of the cases, are not commercially available. The aim of this study was to develop a quick and clean preparative-scale methodology for preparing fractions of red propolis directly from a complex crude ethanol extract by combining the extractive capacity of counter-current chromatography (CCC) with preparative HPLC. The CCC method development included step gradient elution for the removal of waxes (which can bind to and block HPLC columns), sample injection in a single solvent to improve stationary phase stability, and a change in the mobile phase flow pattern, resulting in the loading of 2.5 g of the Brazilian red propolis crude extract on a 912.5 mL Midi CCC column. Three compounds were subsequently isolated from the concentrated fractions by preparative HPLC and identified by NMR and high-resolution MS: red pigment, retusapurpurin A; the isoflavan 3(R)-7-O-methylvestitol; and the prenylated benzophenone isomers xanthochymol/isoxanthochymol. These compounds are markers of red propolis that contribute to its therapeutic properties, and the amount isolated allows for further biological activities testing and for their use as chromatographic standards.


Subject(s)
Countercurrent Distribution , Propolis , Propolis/chemistry , Countercurrent Distribution/methods , Chromatography, High Pressure Liquid , Brazil , Animals , Chemical Fractionation/methods , Bees/chemistry
2.
Nat Commun ; 12(1): 5544, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545087

ABSTRACT

Mass spectrometry imaging (MSI) is an emerging technology that holds potential for improving, biomarker discovery, metabolomics research, pharmaceutical applications and clinical diagnosis. Despite many solutions being developed, the large data size and high dimensional nature of MSI, especially 3D datasets, still pose computational and memory complexities that hinder accurate identification of biologically relevant molecular patterns. Moreover, the subjectivity in the selection of parameters for conventional pre-processing approaches can lead to bias. Therefore, we assess if a probabilistic generative model based on a fully connected variational autoencoder can be used for unsupervised analysis and peak learning of MSI data to uncover hidden structures. The resulting msiPL method learns and visualizes the underlying non-linear spectral manifold, revealing biologically relevant clusters of tissue anatomy in a mouse kidney and tumor heterogeneity in human prostatectomy tissue, colorectal carcinoma, and glioblastoma mouse model, with identification of underlying m/z peaks. The method is applied for the analysis of MSI datasets ranging from 3.3 to 78.9 GB, without prior pre-processing and peak picking, and acquired using different mass spectrometers at different centers.


Subject(s)
Imaging, Three-Dimensional , Neural Networks, Computer , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Algorithms , Animals , Connective Tissue/diagnostic imaging , Connective Tissue/pathology , Deep Learning , Disease Models, Animal , Humans , Kidney/diagnostic imaging , Metabolomics , Mice , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Nonlinear Dynamics , Reproducibility of Results , alpha-Defensins/metabolism
3.
An Acad Bras Cienc ; 92(2): e20191201, 2020.
Article in English | MEDLINE | ID: mdl-32813866

ABSTRACT

Solidago microglossa is used as an anti-inflammatory agent in traditional Brazilian medicine, and this work evaluated the anti-inflammatory potential of the crude ethanolic extract of the flowers of S. microglossa in vivo, as assayed by paw edema models induced by carrageenan, prostaglandin E2, bradykinin and compound 48/80. In the chemical profile, we identified compounds by electrospray ionization mass spectrometry and quantified them by HPLC-DAD. Additionally, this study analyzed the potential to activate the in vitro transcriptional activity of PPARγ, which is a nuclear receptor linked to the anti-inflammatory response. It was possible to identify five compounds: quinic acid, quercetin, chlorogenic acid, hyperoside, and rutin. In the paw edema evaluation, it was possible to show the potential of reducing edema during the inflammatory process. The crude ethanolic extract of the flowers of S. microglossa activated PPARγ compared to the full agonist rosiglitazone and in a dose-response manner. It is possible to conclude that the extract of the flowers of S. microglossa showed anti-inflammatory activity, and the phenolic compounds present in this species might be responsible for this activity.


Subject(s)
Solidago , Anti-Inflammatory Agents , Arnica , Brazil , Carrageenan , Edema , Humans , PPAR gamma , Plant Extracts
4.
An Acad Bras Cienc ; 89(3 Suppl): 2247-2259, 2017.
Article in English | MEDLINE | ID: mdl-28746550

ABSTRACT

Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and ß-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell) and K562 (human chronic myelocytic leukemia cell), respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bees/chemistry , Phenols/pharmacology , Propolis/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Methicillin-Resistant Staphylococcus aureus , Tandem Mass Spectrometry
5.
An. acad. bras. ciênc ; 89(3,supl): 2247-2259, 2017. tab, graf
Article in English | LILACS | ID: biblio-886802

ABSTRACT

ABSTRACT Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell) and K562 (human chronic myelocytic leukemia cell), respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.


Subject(s)
Animals , Phenols/pharmacology , Propolis/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bees/chemistry , Tandem Mass Spectrometry , Methicillin-Resistant Staphylococcus aureus
6.
Molecules ; 19(2): 1843-55, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24514747

ABSTRACT

The Myrtaceae family is a common source of medicines used in the treatment of numerous diseases in South America. In Brazil, fruits of the Campomanesia species are widely used to make liqueurs, juices and sweets, whereas leaves are traditionally employed as a medicine for dysentery, stomach problems, diarrhea, cystitis and urethritis. Ethanol extracts of Campomanesia adamantium (Myrtaceae) leaves and fruits were evaluated against prostate cancer cells (PC-3). The compound (2E)-1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one, cardamonin) was isolated from ethanol extracts of C. adamantium leaves in a bioactivity-guided study and quantified by UPLC-MS/MS. In vitro studies showed that the isolated chalcone cardamonin inhibited prostate cancer cell proliferation and decreased the expression of NFkB1. Moreover, analysis by flow cytometry showed that this compound induced DNA fragmentation, suggesting an effect on apoptosis induction in the PC-3 cell line.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Prostatic Neoplasms/drug therapy , Brazil , Cell Line, Tumor , Chalcone/chemistry , Chalcone/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Humans , Male , Myrtaceae/chemistry , Plant Extracts/chemistry , Prostatic Neoplasms/pathology
7.
Food Chem ; 146: 174-80, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24176329

ABSTRACT

Propolis is a resin that bees collect from different plant sources and use in the defense of the bee community. The intricate composition of propolis varies depending on plant sources from different geographic regions and many types have been reported. Red coloured propolis found in several states in Brazil and in other countries has known antimicrobial and antioxidant activity. Different analytical methods have been applied to studies regarding the chemical composition and plant origins of red propolis. In this study samples of red propolis from different regions have been characterised using direct infusion electrospray ionisation mass spectrometry (ESI(-)-MS) fingerprinting. Data from the fingerprints was extracted and analysed by multivariate analysis to group the samples according to their composition and marker compounds. Despite similar colour, the red coloured propolis samples were divided into three groups due to contrasting chemical composition, confirming the need to properly characterise the chemical composition of propolis.


Subject(s)
Propolis/chemistry , Animals , Biomarkers/analysis , Brazil , Color , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...