Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Synth Biol (Oxf) ; 6(1): ysab006, 2021.
Article in English | MEDLINE | ID: mdl-34151028

ABSTRACT

Automation has been shown to improve the replicability and scalability of biomedical and bioindustrial research. Although the work performed in many labs is repetitive and can be standardized, few academic labs can afford the time and money required to automate their workflows with robotics. We propose that human-in-the-loop automation can fill this critical gap. To this end, we present Aquarium, an open-source, web-based software application that integrates experimental design, inventory management, protocol execution and data capture. We provide a high-level view of how researchers can install Aquarium and use it in their own labs. We discuss the impacts of the Aquarium on working practices, use in biofoundries and opportunities it affords for collaboration and education in life science laboratory research and manufacture.

2.
Nat Biotechnol ; 38(12): 1466-1475, 2020 12.
Article in English | MEDLINE | ID: mdl-32661437

ABSTRACT

Engineered genetic systems are prone to failure when their genetic parts contain repetitive sequences. Designing many nonrepetitive genetic parts with desired functionalities remains a difficult challenge with high computational complexity. To overcome this challenge, we developed the Nonrepetitive Parts Calculator to rapidly generate thousands of highly nonrepetitive genetic parts from specified design constraints, including promoters, ribosome-binding sites and terminators. As a demonstration, we designed and experimentally characterized 4,350 nonrepetitive bacterial promoters with transcription rates that varied across a 820,000-fold range, and 1,722 highly nonrepetitive yeast promoters with transcription rates that varied across a 25,000-fold range. We applied machine learning to explain how specific interactions controlled the promoters' transcription rates. We also show that using nonrepetitive genetic parts substantially reduces homologous recombination, resulting in greater genetic stability.


Subject(s)
Genetic Engineering , Automation , Bacteria/genetics , Base Sequence , Nucleosomes/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...