Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 212: 108753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781637

ABSTRACT

Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.


Subject(s)
Nanostructures , Plants , Nanostructures/chemistry , Plants/metabolism , Plants/drug effects , Reactive Oxygen Species/metabolism , Carbon/metabolism , Nanotubes, Carbon , Fullerenes/pharmacology , Fullerenes/metabolism , Graphite
3.
Vet Res Commun ; 48(3): 1393-1407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38285242

ABSTRACT

The present study investigates for the first time chemical, proximate analyses and immunostimulant effect of Cyrtocarpa edulis fruit (CeF). Three design experiments were carried out to evaluate immunostimulant effect of C. edulis fruit: in vitro, in vivo and ex vivo studies in juveniles Almaco jack Seriola rivoliana. In general, nutraceutical studies performed by gas chromatography/mass spectrometry (GC-MS) in CeF revealed a major quantity of the carbohydrate groups and phytosterols such as ß-sitosterol. Their phytochemical and antioxidant values exposed a significant content of total phenols, flavonoids, and tannins, showing an antioxidant capacity against hydroxyl and superoxide radical. The in vitro results confirm that CeF is edible and enhanced the innate immune response in head-kidney leukocytes after 24 h of immunostimulation. The in vivo results showed that myeloperoxidase, nitric oxide production, as well as antioxidant enzymes were enhanced in skin mucus of those fish fed with CeF. Interestingly in the intestine, IL-ß, TNF-α, MARCO and Piscidin gene expression were up-regulated in fish fed with C. edulis after 4 weeks. Finally, ex vivo experiments showed an important enhancement on cellular parameters (phagocytosis, respiratory burst, myeloperoxidase, and nitric oxide production) in head-kidney leukocytes of fish fed CeF and intraperitoneally infected with A. hydrophila. The results demonstrate that C. edulis fruit (0.5%) represents an available phytochemical and antioxidant rich alternative with great potential as fish immunostimulant additive.


Subject(s)
Adjuvants, Immunologic , Fruit , Animals , Fruit/chemistry , Adjuvants, Immunologic/pharmacology , Animal Feed/analysis , Diet/veterinary , Myrtaceae/chemistry , Antioxidants/pharmacology , Dietary Supplements/analysis
4.
Carbohydr Polym ; 327: 121671, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171684

ABSTRACT

Fructans, are carbohydrates defined as fructose-based polymers with countable degree of polymerization (DP) ranging so far from DP3 to DP60. There are different types of fructans depending on their molecular arrangement. They are categorized as linear inulins and levans, neoseries of inulin and levan, branched graminans, and highly branched neofructans, so called agavins (Agave carbohydrates). It is worth to note that agavins are the most recently described type of fructans and they are also the most complex ones. The complexity of these carbohydrates is correlated to their various isomers and degree of polymerization range, which is correlated to their multifunctional application in industry and human health. Here, we narrate the story of the agavins' discovery. This included their chemical characterization, their benefits, biotechnological applications, and drawbacks over human health. Finally, a perspective of the study of agavins and their interactions with other metabolites through metabolomics is proposed.


Subject(s)
Agave , Humans , Agave/chemistry , Carbohydrates , Fructans/chemistry , Inulin/metabolism , Fructose/metabolism
5.
Sci Rep ; 13(1): 19888, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37964003

ABSTRACT

Fructans found in agave are called agavins, highly branched neo-fructans. They are essential on the yield and quality of Tequila production. The need for agave specimens with higher accumulation of agavins became essential before the growing demand of such products. To get such specimens, understanding agavins metabolism is a quintessential requirement. For this, a more efficient biological model is required. The recently reclassified Agave amica possesses the potential to gather the requirements for becoming such a model. Therefore, this study dealt with the characterization of carbohydrates in the bulbs of A. amica focusing on fructans. Moreover, it tested and described its feasibility as model for the accelerated study of agavins. Infrared analysis unveiled potential content of fructans in the bulbs of A. amica. Furthermore, high performance thin layer chromatography detected fructooligosaccharides. High performance anion exchange chromatography confirmed a polydisperse mixture of branched fructans. Gas chromatography-mass spectrometry analysis demonstrated agavins like structures in the bulbs of A. amica. Moreover, total fructan content and multivariate data analysis through bulb's age demonstrated their correlation. Thus, the presence of agavins, their correlation with phenology, and their technical advantages highlighted the feasibility of this species as a potential new biological model for the study of agavins' metabolism.


Subject(s)
Agave , Agave/metabolism , Carbohydrates , Chromatography, Thin Layer , Fructans/metabolism
6.
Curr Res Food Sci ; 6: 100451, 2023.
Article in English | MEDLINE | ID: mdl-36798949

ABSTRACT

Fructans are categorized as fructose-based metabolites with no more than one glucose in their structure. Agave species possess a mixture of linear and ramified fructans with different degrees of polymerization. Among them, fructooligosaccharides are fructans with low degree of polymerization which might be approachable by high performance thin layer chromatography (HPTLC). Thus, this study used two emblematic Agave species collected at different ages as models to explore the feasibility of HPTLC-based fingerprinting to characterize fructooligosaccharides (FOS) production, accumulation, and behavior through time. To do so, high performance anion exchange was also used as analytical reference to determine the goodness and robustness of HPTLC data. The multivariate data analysis showed separation of samples dictated by species and age effects detected by both techniques. Moreover, linear correlations between the increase of the age in agave and their carbohydrate fraction was established in both species by both techniques. Oligosaccharides found to be correlated to species and age factors, these suggest changes in specific carbohydrate metabolism enzymes. Thus, HPTLC was proven as a complementary or stand-alone fingerprinting platform for fructooligosaccharides characterization in biological mixtures. However, the type of derivatizing reagent and the extraction color channel determined the goodness of the model used to scrutinize agavin fructooligosaccharides (aFOS).

7.
Food Chem ; 415: 135767, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36842374

ABSTRACT

Agavins (fructans from the agave plant) are used for their technological and prebiotic properties in developing functional foods. In this study, four extraction methods were evaluated: ultrasound (U), microwave (M), simultaneous ultrasound-microwave (UM), and heat treatment (HT). Isomers with a degree of polymerization (DP) > 10, as well as a significant concentration of fructooligosaccharides (FOS) were identified. The yield obtained by UM (72%) was similar to the other methods; however, the extraction time was shorter (5 min). In U, M, and HT the yields were 86, 76, and 85% in 35, 30, and 180 min, respectively. In addition, FTIR spectra showed evidence of regions corresponding to fatty acids and carbohydrates. Therefore, using UM to obtain agavins is a more ecological and faster process.


Subject(s)
Agave , Hot Temperature , Fructans , Microwaves , Carbohydrates
8.
Fish Shellfish Immunol ; 131: 408-418, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36265741

ABSTRACT

"Cacti" are rich sources of phytochemicals with antioxidant activity, and their use is mainly focused on infusions in traditional medicine in Mexico. This study characterizes the chemical compounds found in Cylindropuntia cholla root by gas chromatography coupled to mass spectrometry (GC-MS) and determines the total content of polyphenols and flavonoids, as well as their antioxidant capacity. The immunostimulatory effect of aqueous C. cholla root extract (ACcr) was evaluated at concentrations of 50, 250, 500, and 1000 µg/mL in Tilapia peripheral blood leukocytes. The results obtained by the GC-MS analysis revealed the presence of phenolic acids, flavonoid and phytosterol derivatives as ß-sitosterol and campesterol. The determination of the total polyphenol and flavonoid contents indicated that ACcr is abundant in polyphenols, showing an anti-radical capacity of scavenging free radicals, such as those of hydroxyl and superoxide, as well as an increase in lipid peroxidation inhibition capacity. Stimulation of tilapia leukocytes resulted in the increase of its phagocytic activity, respiratory burst, nitric oxide production, and superoxide dismutase activity. Finally, the results obtained for the first time allowed establishing the chemical profile of ACcr and its antimicrobial activity against three important pathogenic bacteria. The potential of this root is indicated as an additive in formulating antioxidant and immunostimulant supplements for the aquaculture and pharmaceutical industry.


Subject(s)
Anti-Infective Agents , Cactaceae , Cichlids , Tilapia , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Polyphenols/pharmacology , Flavonoids/pharmacology , Immunity , Leukocytes
9.
ACS Omega ; 7(35): 30756-30767, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092630

ABSTRACT

The COVID-19 pandemic has caused major disturbances to human health and economy on a global scale. Although vaccination campaigns and important advances in treatments have been developed, an early diagnosis is still crucial. While PCR is the golden standard for diagnosing SARS-CoV-2 infection, rapid and low-cost techniques such as ATR-FTIR followed by multivariate analyses, where dimensions are reduced for obtaining valuable information from highly complex data sets, have been investigated. Most dimensionality reduction techniques attempt to discriminate and create new combinations of attributes prior to the classification stage; thus, the user needs to optimize a wealth of parameters before reaching reliable and valid outcomes. In this work, we developed a method for evaluating SARS-CoV-2 infection and COVID-19 disease severity on infrared spectra of sera, based on a rather simple feature selection technique (correlation-based feature subset selection). Dengue infection was also evaluated for assessing whether selectivity toward a different virus was possible with the same algorithm, although independent models were built for both viruses. High sensitivity (94.55%) and high specificity (98.44%) were obtained for assessing SARS-CoV-2 infection with our model; for severe COVID-19 disease classification, sensitivity is 70.97% and specificity is 94.95%; for mild disease classification, sensitivity is 33.33% and specificity is 94.64%; and for dengue infection assessment, sensitivity is 84.27% and specificity is 94.64%.

10.
Plants (Basel) ; 11(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35890468

ABSTRACT

Despite the recognition of Agave tequilana Weber var. Azul as raw material for producing tequila and obtaining prebiotics, there are other highly relevant Agave species in Mexico. Oaxaca contains a startlingly diverse range of Agave species; Agave angustifolia Haw. and Agave potatorum Zucc. are two classic specimens with great commercial potential. In this study, we examined the fructan fluctuation in these two species during their lifetime in the field (from 1 to 6 years old). First, we analyzed their morphological diversity based on vegetative characteristics. Subsequently, fructan extracts were analyzed by TLC, FT-IR, and HPAEC-PAD to identify carbohydrates. Multivariate analyses of the morphological parameters indicated a morphological divergence between the two species. Furthermore, we found that the concentration of simple carbohydrates and fructans, as well as the fructan DP, changed during plant development. Glucose, fructose, and fructooligosaccharides (FOS) were more abundant in A. potatorum, while A. angustifolia showed a greater amount of sucrose and fructans with a high DP. Fructan DP heatmaps were constructed using HPAEC-PAD profiles-the heatmaps were very helpful for establishing an easy correlation between age and the carbohydrate types present in the fructan extracts. This study is an important contribution to the agave fructan knowledge of the Mexican agave diversity.

11.
Plants (Basel) ; 11(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684270

ABSTRACT

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for understanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots.

12.
Sci Rep ; 12(1): 8507, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35596065

ABSTRACT

Sansevieria trifasciata is used as an indoor plant, in traditional medicine and as a fiber source. Here we characterized fibers of two of varieties of S. trifasciata, Lorentii and Hahnii, and report a protocol for their propagation based on indirect shoot organogenesis. Structural and ribbon fibers were scattered within leaf parenchyma when viewed with confocal laser scanning microscopy. Chemical analysis of the fibers by mass spectrometry and high-performance chromatography revealed higher contents of cellulose and xylose in Lorentii than in Hahnii and significant differences for total lignin between both. A protocol for de novo shoot production was then developed using leaf explants. Time-course histological analyses showed that the first events of transdifferentiation were triggered preferentially in cells surrounding fibers and vascular bundles. Callogenesis and shoot performances were quantified for both varieties, and 2,4-D at 2 and 3 mg·L-1 yielded the best results for primary calli induction and fresh calli mass. The length, number, and mass of shoots produced did not differ significantly between the two cultivars. The fast morphogenic response of S. trifasciata to in vitro culture may be useful for mass propagation or other biotechnological purposes such as metabolite production.


Subject(s)
Sansevieria , Gas Chromatography-Mass Spectrometry , Organogenesis , Plant Leaves , Plant Shoots/physiology , Regeneration
13.
Foods ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267303

ABSTRACT

Agavins are prebiotics and functional fiber that modulated the gut microbiota and metabolic status in obese mice. Here, we designed a placebo-controlled, double-blind, exploratory study to assess fluctuations in gastrointestinal (GI) tolerability-related symptoms to increasing doses of agavins in 38 lean and obese Mexican adults for five weeks and their impact on subjective appetite, satiety, metabolic markers, and body composition. All GI symptoms showed higher scores than placebo at almost every dose for both lean and obese groups. Flatulence caused an intense discomfort in the lean-agavins group at 7 g/day, while obese-agavins reported a mild-to-moderate effect for all five symptoms: no significant differences among 7, 10, and 12 g/day for flatulence, bloating, and diarrhea. Ratings for any GI symptom differed between 10 and 12 g/day in neither group. The inter-group comparison demonstrated a steady trend in GI symptoms scores in obese participants not seen for lean volunteers that could improve their adherence to larger trials. Only body weight after 10 g/day reduced from baseline conditions in obese-agavins, with changes in triglycerides and very-low-density lipoproteins compared to placebo at 5 g/day, and in total cholesterol for 10 g/day. Altogether, these results would help design future trials to evaluate agavins impact on obese adults.

14.
Biomolecules ; 11(10)2021 10 05.
Article in English | MEDLINE | ID: mdl-34680096

ABSTRACT

Botryococcus braunii produce liquid hydrocarbons able to be processed into combustion engine fuels. Depending on the growing conditions, the cell doubling time can be up to 6 days or more, which is a slow growth rate in comparison with other microalgae. Few studies have analyzed the cell cycle of B. braunii. We did a bioinformatic comparison between the protein sequences for retinoblastoma and cyclin-dependent kinases from the A (Yamanaka) and B (Showa) races, with those sequences from other algae and Arabidopsis thaliana. Differences in the number of cyclin-dependent kinases and potential retinoblastoma phosphorylation sites between the A and B races were found. Some cyclin-dependent kinases from both races seemed to be phylogenetically more similar to A. thaliana than to other microalgae. Microscopic observations were done using several staining procedures. Race A colonies, but not race B, showed some multinucleated cells without chlorophyll. An active mitochondrial net was detected in those multinucleated cells, as well as being defined in polyphosphate bodies. These observations suggest differences in the cell division processes between the A and B races of B. braunii.


Subject(s)
Amino Acid Sequence/genetics , Cell Division/genetics , Hydrocarbons/metabolism , Microalgae/genetics , Arabidopsis/genetics , Cell Cycle/genetics , Cell Lineage/genetics , Chlorophyll/genetics , Computer Simulation , Hydrocarbons/chemistry , Microalgae/growth & development , Photosynthesis/genetics
15.
PLoS One ; 16(8): e0256016, 2021.
Article in English | MEDLINE | ID: mdl-34383828

ABSTRACT

Mitochondria participate in multiple functions in eukaryotic cells. Although disruption of mitochondrial function has been associated with energetic deregulation in cancer, the chronological changes in mitochondria during cancer development remain unclear. With the aim to assess the role of mitochondria throughout cancer development, we analyzed samples chronologically obtained from induced hepatocellular carcinoma (HCC) in rats. In our analyses, we integrated mitochondrial proteomic data, mitochondrial metabolomic data and nuclear genome transcriptomic data. We used pathway over-representation and weighted gene co-expression network analysis (WGCNA) to integrate expression profiles of genes, miRNAs, proteins and metabolite levels throughout HCC development. Our results show that mitochondria are dynamic organelles presenting specific modifications in different stages of HCC development. We also found that mitochondrial proteomic profiles from tissues adjacent to nodules or tumor are determined more by the stage of HCC development than by tissue type, and we evaluated two models to predict HCC stage of the samples using proteomic profiles. Finally, we propose an omics integration pipeline to massively identify molecular features that could be further evaluated as key regulators, biomarkers or therapeutic targets. As an example, we show a group of miRNAs and transcription factors as candidates, responsible for mitochondrial metabolic modification in HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Diethylamines/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Metabolome , Mitochondria/metabolism , Proteome/metabolism , Transcriptome , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mitochondria/drug effects , Proteome/analysis , Rats , Rats, Inbred F344
16.
Sci Rep ; 11(1): 7549, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824363

ABSTRACT

In the pharmaceutical industry nano-hydrocolloid systems frequently coalesce or present nanoparticle aggregation after a long storage periods. Besides, the lyophilization process used to dry nanoparticles (NPs) produces loss of their original properties after dispersion. In this work we evaluated the effect on morphology and physicochemical properties of different protective excipients during drying of bovine serum albumin (BSA) NPs loaded with different concentrations of capsaicin. Capsaicin concentrations of 0, 812, 1625, 2437, and 3250 µg mL-1 were used; subsequently, NPs were dried with deionized water (DW), NaCl (DN), sucrose (DS), and not dried (ND). We found that ND, DW, and DN treatments showed a negative effect on the NPs properties; while, DS reduced the aggregation and produced the formation of isolated nanoparticles at higher concentrations of capsaicin (3250 µg mL-1), improving their circular shape, morphometrical parameters, and ζ-potential. The stability of the BSA-capsaicin NPs was associated to complex capsaicin/amino acid/water, in which GLY/GLN, ALA/HIS, ARG, THR, TYR, and Iso/CYS amino acids are involved in the restructuration of capsaicin molecules into the surface of nanoparticles during the drying process. The secondary nanostructuration in the post-synthesis stage can improve the molecular stability of the particles and the capacity of entrapping hydrophobic drugs, like capsaicin.

17.
Trop Anim Health Prod ; 53(1): 101, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33417070

ABSTRACT

This study investigated Lippia palmeri Watt (oregano) phytochemical compounds, their antioxidant capacity, and immunological effects on goat peripheral blood leukocytes (PBL), and on the presence of intermediate polar compounds in goat feces fed dietary oregano. The polar and nonpolar fractions of L. palmeri W. were characterized and phytochemical contents and antioxidant capacity were determined. Twelve healthy Anglo-Nubian goats were used for the in vivo trials, which were randomly assigned to control fed with basal diet, or oregano group fed with basal diet + 2.6% (DM basis) dried oregano leaves. Goat peripheral blood leukocytes (PBL) were isolated for the in vitro study, and PBL were stimulated with oregano extracts at 100 and 150 µg/mL after 24 h. For the in vivo trial, dietary oregano (2.6% on DM basis) was evaluated in the goats for 90 days. Relatively high abundance of carvacrol and thymol phytochemical compounds was found in oregano. The highest antioxidant capacity of oregano extracts was detected at 100 and 150 µg/mL. Nitric oxide production, phagocytosis, and superoxide dismutase activities increased (p < 0.05) in stimulated PBL with oregano extracts, whereas the pro-inflammatory (TNF-α and IL-1ß) transcription and antioxidant (CAT and GPX-4) genes downregulated. In the in vivo experiment, dietary oregano enabled the detection of nine compounds found in goat feces, from which caproic (C6) was in a high relative quantity compared with the control group. Oregano has phytochemical compounds with strong antioxidant capacity that protect cells against oxidative stress damage and could modulate immune response and feces composition in goats.


Subject(s)
Antioxidants/pharmacology , Goats/physiology , Intestines/physiology , Leukocytes/immunology , Lippia/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Female , Plant Extracts/administration & dosage , Random Allocation
18.
Foods ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287102

ABSTRACT

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1ß, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.

19.
J Phys Chem Lett ; 11(19): 8008-8016, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32840378

ABSTRACT

The pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has quickly spread globally, infecting millions and killing hundreds of thousands of people. Herein, to identify potential antiviral agents, 97 natural amide-like compounds known as alkamides and piperamides were tested against SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), and the human angiotensin-converting enzyme 2 (ACE2) using molecular docking and molecular dynamics simulations. The docking results showed that alkamides and dimeric piperamides from Piper species have a high binding affinity and potential antiviral activity against SARS-CoV-2. The absorption, distribution, metabolism, and excretion (ADME) profile and Lipinski's rule of five showed that dimeric piperamides have druglikeness potential. The molecular dynamics results showed that pipercyclobutanamide B forms a complex with Mpro at a similar level of stability than N3-I. Our overall results indicate that alkamides and piperamides, and specifically pipercyclobutanamide B, should be further studied as compounds with SARS-CoV-2 antiviral properties.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Coronavirus Infections/drug therapy , Piper/chemistry , Piperidines/pharmacology , Piperidines/therapeutic use , Pneumonia, Viral/drug therapy , Amides/chemistry , Amides/therapeutic use , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacokinetics , Benzodioxoles/pharmacokinetics , Betacoronavirus/drug effects , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/drug effects , Piperidines/pharmacokinetics , SARS-CoV-2 , Viral Nonstructural Proteins/antagonists & inhibitors
20.
Plant Foods Hum Nutr ; 75(1): 96-102, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31853903

ABSTRACT

Agave bagasse is a fibrous-like material obtained during aguamiel extraction, which is also in contact with indigenous microbiota of agave plant during aguamiel fermentation. This plant is a well-known carrier of the prebiotic fructan-type carbohydrates, which have multiple ascribable health benefits. In the present work, the potential of ashen and green agave bagasse as functional ingredients in supplemented cookies was studied. For its application, the chemical, functional, properties of agave bagasses and formulated cookies were evaluated, as well as the physical properties of cookies. Chemical characterization was carried out by the proximate analysis of both bagasses and cookies, besides, the analysis of oligosaccharides was made by thin-layer chromatography and high-performance anion-exchange chromatography. In the same way, functional properties such as oil holding capacity, organic molecule absorption capacity, swelling capacity, and water holding capacity were analyzed in both agave bagasses and supplemented cookies. Finally, modifications in color and texture due to bagasse addition was studied through an analysis of total color difference and a penetrometric test, respectively. In this sense, ashen and green agave bagasses demonstrated chemical and functional properties for use in the food industry, since they increased oil holding capacity of cookies and transferred prebiotic fructooligosaccharides to both agave bagasse formulations, which remain active as a prebiotic ingredient in cookies after in vitro digestion and cookie manufacture, including thermal treatment. Hence, agave bagasse could be considered a valuable alternative for the addition of the nutritionally-relevant dietary fiber in healthier foods.


Subject(s)
Agave , Cellulose , Food, Fortified , Fructans , Prebiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...