Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 87(4): 2691-700, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15298872

ABSTRACT

The role of tumor suppressor protein p53 in cell cycle control depends on its flexible and partially unstructured conformation, which makes it crucial to understand its folding landscape. Here we report an intermediate structure of the core domain of the tumor suppressor protein p53 (p53C) during equilibrium and kinetic folding/unfolding transitions induced by guanidinium chloride. This partially folded structure was undetectable when investigated by intrinsic fluorescence. Indeed, the fluorescence data showed a simple two-state transition. On the other hand, analysis of far ultraviolet circular dichroism in 1.0 M guanidinium chloride demonstrated a high content of secondary structure, and the use of an extrinsic fluorescent probe, 4,4'-dianilino-1,1' binaphthyl-5,5'-disulfonic acid, indicated an increase in exposure of the hydrophobic core at 1 M guanidinium chloride. This partially folded conformation of p53C was plagued by aggregation, as suggested by one-dimensional NMR and demonstrated by light-scattering and gel-filtration chromatography. Dissociation by high pressure of these aggregates reveals the reversibility of the process and that the aggregates have water-excluded cavities. Kinetic measurements show that the intermediate formed in a parallel reaction between unfolded and folded structures and that it is under fine energetic control. They are not only crucial to the folding pathway of p53C but may explain as well the vulnerability of p53C to undergo departure of the native to an inactive state, which makes the cell susceptible to malignant transformation.


Subject(s)
Guanidine/chemistry , Tumor Suppressor Protein p53/chemistry , Dimerization , Kinetics , Multiprotein Complexes/chemistry , Protein Conformation , Protein Folding , Protein Structure, Tertiary
2.
Biochemistry ; 42(30): 9022-7, 2003 Aug 05.
Article in English | MEDLINE | ID: mdl-12885235

ABSTRACT

Alzheimer's disease, Parkinson's disease, cystic fibrosis, prion diseases, and many types of cancer are considered to be protein conformation diseases. Most of them are also known as amyloidogenic diseases due to the occurrence of pathological accumulation of insoluble aggregates with fibrillar conformation. Some neuroblastomas, carcinomas, and myelomas show an abnormal accumulation of the wild-type tumor suppressor protein p53 either in the cytoplasm or in the nucleus of the cell. Here we show that the wild-type p53 core domain (p53C) can form fibrillar aggregates after mild perturbation. Gentle denaturation of p53C by pressure induces fibrillar aggregates, as shown by electron and atomic force microscopies, by binding of thioflavin T, and by circular dichroism. On the other hand, heat denaturation produced granular-shaped aggregates. Annular aggregates similar to those found in the early aggregation stages of alpha-synuclein and amyloid-beta were also observed by atomic force microscopy immediately after pressure treatment. Annular and fibrillar aggregates of p53C were toxic to cells, as shown by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reduction assay. Interestingly, the hot-spot mutant R248Q underwent similar aggregation behavior when perturbed by pressure or high temperature. Fibrillar aggregates of p53C contribute to the loss of function of p53 and seed the accumulation of conformationally altered protein in some cancerous cells.


Subject(s)
Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/ultrastructure , Animals , Cell Line , Hot Temperature , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Microscopy, Atomic Force , Microscopy, Electron , Oxidation-Reduction/drug effects , Pressure , Protein Denaturation , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Tetrazolium Salts/metabolism , Thiazoles/metabolism , Tumor Suppressor Protein p53/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...