Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;48(12): 1156-1159, Dec. 2015. graf
Article in English | LILACS | ID: lil-762922

ABSTRACT

Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.


Subject(s)
Animals , Male , Basal Ganglia/anatomy & histology , Diagnosis, Computer-Assisted , Tomography, Optical Coherence , Computer Systems/standards , Corpus Striatum/anatomy & histology , Feasibility Studies , Rats, Wistar , Stereotaxic Techniques , Tomography, Optical Coherence/standards
2.
Braz J Med Biol Res ; 48(12): 1156-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26421868

ABSTRACT

Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.


Subject(s)
Basal Ganglia/anatomy & histology , Diagnosis, Computer-Assisted , Tomography, Optical Coherence , Animals , Computer Systems/standards , Corpus Striatum/anatomy & histology , Feasibility Studies , Male , Rats, Wistar , Stereotaxic Techniques , Tomography, Optical Coherence/standards
3.
QJM ; 108(9): 741-2, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25660610
SELECTION OF CITATIONS
SEARCH DETAIL