Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458046

ABSTRACT

In this study, we deposit a Ge-rich Ge-Sb-Te alloy by physical vapor deposition (PVD) in the amorphous phase on silicon substrates. We study in-situ, by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS), the electronic properties and carefully ascertain the alloy composition to be GST 29 20 28. Subsequently, Raman spectroscopy is employed to corroborate the results from the photoemission study. X-ray diffraction is used upon annealing to study the crystallization of such an alloy and identify the effects of phase separation and segregation of crystalline Ge with the formation of grains along the [111] direction, as expected for such Ge-rich Ge-Sb-Te alloys. In addition, we report on the electrical characterization of single memory cells containing the Ge-rich Ge-Sb-Te alloy, including I-V characteristic curves, programming curves, and SET and RESET operation performance, as well as upon annealing temperature. A fair alignment of the electrical parameters with the current state-of-the-art of conventional (GeTe)n-(Sb2Te3)m alloys, deposited by PVD, is found, but with enhanced thermal stability, which allows for data retention up to 230 °C.

2.
Nanomaterials (Basel) ; 12(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35214960

ABSTRACT

Enrichment of GeSbTe alloys with germanium has been proposed as a valid approach to increase the crystallization temperature and therefore to address high-temperature applications of non-volatile phase change memories, such as embedded or automotive applications. However, the tendency of Ge-rich GeSbTe alloys to decompose with the segregation of pure Ge still calls for investigations on the basic mechanisms leading to element diffusion and compositional variations. With the purpose of identifying some possible routes to limit the Ge segregation, in this study, we investigate Ge-rich Sb2Te3 and Ge-rich Ge2Sb2Te5 with low (<40 at %) or high (>40 at %) amounts of Ge. The formation of the crystalline phases has been followed as a function of annealing temperature by X-ray diffraction. The temperature dependence of electrical properties has been evaluated by in situ resistance measurements upon annealing up to 300 °C. The segregation and decomposition processes have been studied by scanning transmission electron microscopy (STEM) and discussed on the basis of density functional theory calculations. Among the studied compositions, Ge-rich Ge2Sb2Te5 is found to be less prone to decompose with Ge segregation.

SELECTION OF CITATIONS
SEARCH DETAIL
...